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Executive summary 
Driver impairment, including distraction and inattention, has a major impact on traffic safety and contributes 
to most crashes in Europe. Automation is expected to have a positive effect on safety as the driver is taken 
out of the driving task. However, for first implementations in SAE level 3, the driver is still expected to serve 
as fall back which requires a fast switch of attention towards the driving task. So, detecting the driver state 
and developing a better understanding of driver impairment is a key enabler to enhance existing advanced 
driver assistance systems (ADAS) as well as to identify new safety relevant factors to be considered in the 
development of new systems up to automated driving functions.  

The recent development in machine learning (ML) shows promising potential in recognizing different driver 
states (such as distraction), various secondary task engagements (such as talking on the phone), and driver 
posture (such as out of position). These algorithms are data-driven and require large amounts of labelled 
images for training and testing.  

The SAFER Naturalistic Driving Data (NDD) platform has been developed over ten years, at the vehicle and 
traffic safety centre hosted by Chalmers University of Technology. The datasets cover 7.5 million km of real-
world driving in different contexts, countries, and vehicle types. In particular, the dataset includes big 
datasets of videos collected from cameras pointed at the driver. 

The project goal was to enrich the existing datasets at SAFER by extracting features from video data. The 
vision was to create a world class vehicle and traffic safety dataset for research and development of active 
and passive vehicle safety systems. Further, the project validated several new functions for attention warning 
on the enriched dataset.  

The project built on competence and advancements in image processing by applying and optimizing state-of-
the-art ML algorithms on the existing large-scale naturalistic driving dataset. The industrial purpose was to 
validate and enhance existing algorithms in smart camera technology and in-vehicle ADAS systems.  

The main research goal was to enable new ground-breaking traffic-safety analyses on driver state, secondary 
task engagement, and posture, which have never been possible before because existing datasets are too small 
and pure manual labelling is costly and time consuming.  

SAFER/Chalmers was the main applicant leading the project and in addition contributing to data 
management preparation and performing analysis, both on active and passive safety systems, based on the 
output of the enriched data. Smart Eye, experts in smart camera technology, did the main work on feature 
extraction and used the enriched dataset to validate new functions. Autoliv focused on passive safety features 
and provided access to data from the Eyes-On-Road project. Volvo Cars and Volvo Group supported the 
project by providing access to data. 

The project was originally three years starting on November 2019, but extended to four years due to COVID-
pandemic issues. The total project budget of 8,5 MSEK where the consortia received VINNOVA/FFI funding 
of 4,2 MSEK. 
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1. Introduction 
This project started with two important inputs: the SAFER NDD database, and an improved version of the 
Smart Eye driver and cabin monitoring algorithms. The improved algorithm though needed to be adapted to 
the specifics of the available data. This adaptation, i.e., training of the algorithm, needed manually labelled 
data (from manual video labeling done by students at SAFER) for generating a model. This model was tested 
on selected parts of the SAFER NDD database, and the result was validated. The time-consuming labelling 
and validation effort had to be repeated multiple times, and the size of the tested data increased for each step. 
This iterative approach generated the result of an improved dataset of two groups of features: labelled data of 
the Driving Monitoring System (DMS) including gaze, head and eye tracking, and features generated from 
Cabin Monitoring System (CMS), covering driver posture from detection of limps. 

In previous projects, data was only partially annotated and analyzed, as it was done in relation to certain 
events of interest of those projects. Since the data was collected and certain features were auto labeled by 
Smart Eye the first time, the Smart Eye software has been further developed, and now of this project had not 
only more possibilities to analyze head and eyes of the driver, but also had new possibilities to analyze full 
upper body. As a result, this project created an opportunity to annotate more trips and more features. 

In general, the numbers presented in this project for both CM and DM are impressive.  
In this project over two billion images were auto labelled where the frame quality is ok. 
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2. FOT-e Dataset 
The SAFER naturalistic driving data (NDD) platform contains data collected mainly in three large European 
projects: EuroFOT, Drive C2X and UDRIVE. The data includes various videos (see Fig. 2.1 for examples of 
videos) and logs collected on public roads in different contexts, countries, and vehicle types covering 7.5 
million km for 130 000 hours.  During the data collection projects, all drivers have signed consent forms, that 
they agree that the images and videos are ok for research and publication. Nevertheless, all videos are only 
available at SAFER in special locked FOT rooms, by authorized personnel. 

The data from EuroFOT and DriveC2X was using similar logging equipment, camera positions and head and 
eye tracking system, which motivated the choice of these two datasets for the project, collectively called 
further on as the “FOT-e dataset”. In total, the FOT-e dataset represents 2 440 million kilometers during  
52 400 hours of real-world driving on public roads.  

The data in EuroFOT was collected in 2010-2011 and DriveC2X in 2013. The data recorders were installed 
in two different vehicle types: Volvo V70 and Volvo XC70. The interior in these vehicles is similar but it is 
important to understand that the conditions for recording data vary. Since the vehicles are used in normal 
day-to-day conditions, the position of the steering wheel, as well as the position of the driver seat, varies in 
height (x), depth (z), and for the seat, also the angle. The drivers were short and tall, men and women, with 
or without glasses. All these aspects add each a level of complexity for the algorithms to detect different 
features. Also, data was collected in different seasons which means different clothing, and use of sunglasses 
etc. In addition, data recorded nighttime in dark conditions is quite different from daytime, however some 
images were too bright due to sunlight. This is expected beforehand, nevertheless a true challenge.  

     
a)                                                                                                           b)  

Figure 2.1 Example of videos from the cameras. a) driver’s head view example; b) right driver’s upper body view 
example. 

 

 

The files are organized based on the concept of a “trip”. A trip is defined from when the engine ignition is on 
until the engine ignition is off, and all data recorded during this time is attached to it. Any trip shorter than 90 
seconds has already been discarded, and the average trip times are about 20 minutes long. However, a trip 
can be more than 6 hours, in its extreme.   
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Each trip has following datafiles associated with it (see Figure 2.2):  

 five .avi video files of different views including:  
o front view outside of the car,  
o rear view outside of the car,  
o driver’s upper body view (see Figure 2.1), 
o driver’s head view (see Figure 2.1),  
o driver’s feet view,  

 oDBdata.mat (Matlab file that include in-vehicle signals, GPS position, kinematics),  
 oDBdataET.mat (Matlab files that include head- and eye-tracking data produced by the earlier 

versions of the Smart Eye software processing driver’s head view videos). 
  

 
Figure 2.2 Schematic representation of the data contained in a “trip”, in the FOT-e dataset. 
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In-vehicle signals, GPS position, kinematics, head- and eye-tracking data were recorded at 10 Hz, while the 
videos were recorded at 12.5 Hz. The videos were recorded in black and white. When driving in darker 
conditions, IR was used. There was no control over the illumination conditions, so there were multiple cases 
of over and underexposure (see Figure 2.3). To reduce consumed space, the video files were processed 
through a compression algorithm (h264). To conclude, the video data is of low quality, but this limitation is 
compensated for the unique data on driver behavior included in the dataset.  

 
Figure 2.3 Examples of over- and under-exposed video images. 

It is important to note that video with the view of the driver’s head was recorded with the Smart Eye System, 
while the other 4 videos were recorded using another equipment. Because of this, videos with the view of the 
driver’s head have different total amount of frames then the rest of the videos. 
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3. FOT-e Algorithm 
The main idea behind this part of the project is the development of an algorithm which can auto-label certain 
features by applying Smart Eye software to the videos of the driver.  

Since the videos are stored in 12,5 Hz frequency and the driver monitoring data are stored in 10 Hz 
frequency, the algorithm is split into two stages. During stage 1, features are auto labeled for each frame of 
the video, and, during the stage 2, the label frequency is adjusted from 12,5 Hz to 10 Hz (see Figure 3.1). 
The two stages are described below in more detail. 

 

 
Figure 3.1 Schematic presentation of the two stages of the algorithm. 

 

Stage 1. The Smart Eye software is divided into two modules: Driver monitoring (DM) module and Cabin 
monitoring (CM) module. DM module used as input videos with the view of the driver’s head (see Figure 
2.1) and CM module used as input videos with the view of the driver’s upper body (see Figure 2.1). At first, 
videos are processed extracting all available Smart Eye features and then those features are post-processed to 
extract labels defined in this project (see Figure 3.2). 

 

 
Figure 3.2 Schematic presentation of the stage 1 of the algorithm. 

 

In the algorithm two quality levels were present, frame quality and prediction quality (see Figure 3.3 and 
Figure 3.4). Frame quality was introduced due to the poor quality of the videos and prediction quality was 
present in the original Smart Eye software. 

“Frame quality” output is a Boolean; however, it is defined differently for DM and CM videos. For DM the 
“Frame quality” had a value of 1 if the algorithm has been able to predict the head bounding box. For CM 
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the “Frame quality” had a value of 1 if the algorithm has been able to identify the object on the driver seat as 
a person. 

“Prediction quality” output is a value in the range between 0 and 1, indicating how confident the algorithm is 
in that prediction. Filtering relative to the “Prediction quality” may be done using different threshold values, 
depending on the user needs. In some cases that filtering is done inside of the algorithm and in other cases it 
is output together with the feature label. 

 
Figure 3.3 Schematic representation of the quality filtering steps. 

 
Figure 3.4 Schematic representation of the data relative to the quality levels. 

 

Stage 2. In the label synchronization stage, each video frame in the oDBdata file is associated with the data 
from the auto-labeled data. In all, this means that five frames of the auto-labeled data are skipped every two 
seconds. Since the data was quite noisy and still with high details, no sampling techniques are used to 
compensate for the excluded frames. The principle is described in the example of Figure 3.5 where the 
frames 4, 9, 14, 19 and 24 are skipped.  

 

 

Figure 3.5 Schematic presentation of the stage 2 of the algorithm. 
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4. Methodology 

4.1. Physical infrastructure 
The videos included personal data, and their use was restricted by the study participants’ consent. This 
stipulated that the data had to be accessed at the SAFER premises. The SAFER NDD infrastructure included 
four dedicated FOT rooms. One of those rooms was used by the Smart Eye team for the algorithm 
development and processing of the data. For that, Smart Eye AB provided computers that were placed in that 
room. Computers got password protection to restrict access to only the members of the project. In addition to 
that, computers were not allowed to connect to the Internet. Once these security measures were implemented, 
the FOT-e dataset was copied to those computers occupying approximately 4 TB of the disc space. 

 

4.2. Algorithm development 

4.2.1. General description of the iterative process 
At first, existing Smart Eye software was used to auto-label the data and was applied to few selected videos. 
It was found that the video files from the FOT-e dataset had a very low resolution and were partly corrupted 
by overexposure. In addition to that, videos had different fields of view between different vehicles, due to 
slight differences in the cameras’ position resulting from the use of the vehicle. Therefore, the existing Smart 
Eye software needed to be adapted to be used on the FOT-e data. This adaptation of the Smart Eye software 
took place through an iterative process and at every iteration went through roughly the same steps (see 
Figure 4.1).  

 
Figure 4.1 Algorithm development iterative process overview. 

At first, a set of videos was selected as well as the features for auto-labelling. The choice of the features was 
guided by the condition that these features could also be manually labeled by annotators Manually labeled 
features are stored at 10 Hz, similarly to the oDBdata.mat, while the auto-labeled features are stored at 12.5 
Hz, similarly to the videos. To create a match between auto and manually annotated labels, the internal 
timestamp (time index) of the manually labeled features and the corresponding frame number of the auto-
labeled features were extracted and stored in a separate file (see Figure 4.2). The manually labeled data with 
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corrected frequency was used as an input for the development and adaptation of the Smart Eye software to 
the FOT-e data (further called “FOT-e auto-labeling software”). Once the development and adaptation were 
finished, the resulting software was applied on the test video set and the results were compared to the manual 
labeling where possible. If the results were not acceptable, new iteration was initiated. If the results were 
acceptable the resulting software was finalized and applied to the whole FOT-e dataset. 

 

 
Figure 4.2 Schematic presentation of the manual and auto-label matching for the CM videos. 

4.2.2. Manual labelling: How? 
The manual labelling was done using the software FOTware (Dozza et al., 2010), developed in the previous 
Field Operational Tests (FOT) SemiFOT and EuroFOT, and continuously updated in the follow-up projects. 
FOTware allows to play multiple videos collected from the different cameras described in Figure 2.2, and to 
show signals collected from different sensors (see Figure 2.2). The software also provides a graphical user 
interface for manual labelling of the data (see Figure 4.3).  

 
Figure 4.3 Screenshot of the FOTware software used for manual labeling. 

The data was manually labeled by student assistants (hereafter called ‘annotators’) who joined the project for 
different periods of time. The annotators were supervised by the Chalmers’ researchers, who provided 
training on how to perform manual labeling, supported the students when needed and checked the quality of 
the manual labelling process by randomly sampling the labelled data.  
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4.2.3. Manual labelling: What? 
The choice of the variables to manually label was jointly taken in the project, considering temporal 
constraints due to the time-consuming labeling process, and feasibility related to the likelihood of being 
successful in auto-labelling the specific features. The definition and the categories for each feature were 
proposed based on the researcher dictionaries c developed in the SHRP2 (SHRP2, 2016) and UDRIVE 
projects (Bargman et al., 2017). Overall, the following features were selected for the initial manual labeling: 

 “Hands on wheel” 
 “Secondary task” 
 “Phone usage” 
 “Drowsiness” 
 “Out of position” 

A short description of each feature is given in Table 4.1.  

Table 4.1 Short description of the features chosen for the initial manual labeling. Features that were not auto-labeled 
by the final FOT-e algorithm are highlighted in grey. 

# Feature name Short feature description Possible categories 

1 Drowsiness 

Visual indications for drowsiness 
are long blinks, yawning and 
posture changes. Long periods of 
closed eyes (micro sleep), head 
nods and startles are strong 
indications for a high level of 
drowsiness. 

1. No drowsiness visible (baseline) 
2. Both eyes closed 
3. One eye closed / another eye open 
4. Yawning. 
5. Startle 

2 Phone usage Handheld use of phone for talking 
and/or texting. 

1. No phone usage 
2. Talking/listening with left hand 
3. Talking/listening with right hand 
4. Texting with left hand 
5. Texting with right hand 

3 Out of position Estimated offset laterally and 
longitudinally from the head rest. 

1. Central position (baseline) 
2. Lateral out-of-position 
3. Longitudinal out-of-position 
4. Lateral and longitudinal out-of-position 

4 Hands on wheel Which hands of the driver are 
touching the steering wheel. 

1. No hands-on wheel 
2. Left hand on / right hand off. 
3. Left hand off / right hand on 
4. Both hands on wheel 
5. Unknown 

5 Secondary task 

Attempts to capture distraction 
activities (other than phone usage) 
which may influence driver 
performance. Focus on distraction 
from inside the vehicle that are 
visible in the actions of the driver 
(video detection) and exclude 
phone use. 

1. No activities 
2. Interaction with passenger in adjacent seat 
3. Talking/singing/whistling 
4. Reaching for an object 
5. Interaction with center stack 
6. Eating/drinking 
7. Smoking 
8. Hands-face-interaction 
9. Reading 
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4.2.4. Manual labeling: How many FOT-e trips? 
The first manually annotated dataset contained features that were selected based on the convenience 
sampling, i.e., sampling, which relied on the previously labelled data within the original projects DriveC2X 
and EuroFOT. The convenience sampling allowed identifying parts of the data where some of the features 
(e.g., phone usage) were already existing, without randomly scanning the whole dataset for finding 
occurrences of the feature. The first manual annotations based on convenience sampling resulted in the 
dataset A1, including 1032 segments (i.e., period for which the data was annotated) whose duration was 
approximately 28 seconds (see Table 4.2). This first dataset did not include enough information for the 
development of the algorithm for one of the features (phone usage), so additional manual labelling was 
performed. An additional dataset—named dataset A2—was therefore manually labeled. The dataset aimed to 
mitigate two concerns associated to dataset A1: a) the lack of sufficient labeled data about participants’ 
phone use; b) the bias associated with the small number of participants whose videos were manually labeled. 
The dataset A2 included data from two participants known for their extensive use of the phone, and from 
participants whose videos were not previously manually labelled. The resulting dataset A2 included a smaller 
number of segments (i.e., 37) but with the duration extended to 140 seconds (see Table 4.2). Then, the total 
dataset encompassed 1069 segments, each one having an average duration of 32 seconds as shown in Table 
4.2. The corresponding number of trips manually labelled trips became 900 out of the total number of 
approximately 135 000 trips. Some statistics of the manually labelled data are presented in Table 4.2. 

 

Table 4.2 Selected statistics for the results for manual labelling. 

Category Dataset A1 Dataset A2 Dataset A=A1+A2 
Number of trips 880 20 900 
Number of drivers 127 4 131 
Number of segments 1032 37 1069 
Number of segments by project: 
DriveC2X 
EuroFOT 

 
396 
636 

 
0 
37 

 
396 
 

Average segment length 28 seconds 141 seconds  32 seconds 
Overall duration Approximately  

8 hours 
Approximately  
1 hour and 30 minutes 

Approximately 
9 hours and 30 min 

 

4.2.5. Manual labelling: How many FOT-e frames per feature? 
In this section, we present the number of frames manually labelled for the features phone usage, hands on 
wheel and secondary tasks for the 900 trips included in datasets A1 and A2 (see Table 4.3). Table 4.3 also 
reports the number of frames annotated for the categories belonging to each feature.  
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Table 4.3 Selected statistics for manually annotated features. 

# Feature Category Frames % 

2 Phone usage 

1. No phone usage 
2. Talking/listening with left hand 
3. Talking/listening with right hand 
4. Texting with left hand 
5. Texting with right hand 

 
Total 

681 262 
58550 
86203 
11198 
25807 
 
863020  

79 % 
7 % 
10 % 
1 % 
3 % 
 
100 % 

4 Hands on wheel 

1. No hands on wheel 
2. Left hand on / right hand off 
3. Left hand off / right hand on 
4. Both hands on wheel 
5. Unknown 

 
Total 

28443 
514544 
177263 
146866 
8449 
 
875565 

3 % 
59 % 
20 % 
17 % 
1 % 
 
100 % 

5 Secondary task 

1. No activities 
2. Interaction with passenger in adjacent seat 
3. Talking/singing/whistling 
4. Reaching for an object 
5. Interaction with center stack 
6. Eating/drinking 
7. Smoking 
8. Hands-face-interaction 
9. Reading 

 
Total 

381973 
3635 
36599 
30781 
12943 
8426 
0 
63401 
2978 
 
540736 

71 % 
1 % 
7 % 
6 % 
2 % 
2 % 
0 % 
12 % 
1 % 
 
100 % 

 

4.2.6. Auto-labelling: development results 
During the algorithm development, some features were added (due to the Smart Eye software advancement), 
and some features were removed or re-defined (due to poor quality of the videos or lack of time). The final 
list of auto-labeled features became: 

 “Eye openness” 
 “Yawning” 
 “Viewing targets” 
 “Head pose” 
 “Phone usage” 
 “Body key-points” 
 “Out of position” 
 “Hands off wheel” 
 “Frame quality” 

Throughout the algorithm development process, reliability was prioritized over availability. Due to the 
abundance and low quality of FOT-e videos, uncertain predictions were discarded, and only confident 
outputs were reported to provide high quality data for future research. It is important to note that all FOT-e 
features required some finetuning and adjustments of the latest Smart Eye software. In addition to that, 
neural networks used for “Phone usage” were re-trained to fit FOT-e data, as well as classical statistical 
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models used for the “Yawning” and “Out of position”. For that, re-training manual labelling presented in the 
manual labelling chapter was used. In addition to manual labelling of “Yawning”, “Phone usage” and “Out of 
position”, manual labelling for “Hands off wheel” was also used for adjusting the algorithm. A short 
description of each label is given in Table 4.4. A more detailed description can be found in Appendix A.  

 

Table 4.4 Short description of the auto-labeled FOT-e features. Features finetuned in this project using manual 
labeling are highlighted in green. 

# Feature 
name Short feature description Output description 

Alg. based 
on neural 
network or 
statistical 
model 

Testing based 
on visual 
inspection and 
ground truth 
comparison 

1 Eye 
openness 

Eye openness or Eyelid opening, 
describes how open the driver eyes 
are in a frame. 

It is a floating-point value in the range 
[0.0, 1.0]. NN VI 

2 Yawning Yawning output stating whether the 
driver is yawning.  Boolean SM GTC 

3 Viewing 
targets 

The viewing targets module provides 
information on what the driver is 
currently looking at. Viewing targets 
are geometrical shapes that represent 
the environment around the driver. In 
this case 4 planes were used: left, 
right, forward, and down. 

For every target plane the output is a 
Boolean, where a value equal to one 
represents an intersection point between 
the viewing direction and a viewing 
target. Only intersections that have a 
higher probability than 0.5 are counted. 
In absence of intersection with the 
defined planes or high-quality 
intersection eye_target_unknown is 
reported. 

NN VI 

4 Head 
pose 

Head pose output includes head 
position and orientation. 

The head position (x,y,z) is expressed in 
reference coordinate system and the 
head orientation is expressed in heading, 
pitch, and roll. 

NN VI 

5 Phone 
usage 

Phone usage attribute states whether 
driver is holding phone to the ear with 
the left or right hand. 

Boolean NN GTC 

6 
Body 
key-
points 

Driver posture is described using 15 
core body key-points: Nose, Two 
Eyes, Two Ears, Two Shoulders, Two 
Elbows, Two Wrists, Two Hips, Two 
Knees. 

Each body key-point is represented in 
pixel coordinates with the origin in the 
top-left corner. 

NN VI 

7 Out of 
position 

Out of position indicates whether a 
person is out of position compared to 
the neutral seating position relative to 
the head rest.  

Boolean SM GTC 

8 Hands 
off wheel 

All cars used in the dataset have the 
steering wheel on the left side. 
Steering wheel polygon region was 
drawn, and hands-off-wheel were 
predicted using that region. If the 
wrist point’s distance to the steering 
wheel polygon was more than the size 
of a hand, the hand was set as off the 
wheel. If it was inside the region or 
closer than a hand-size to the region, 
the hands-off-wheel prediction was 
set to unknown for both hands. 

1. Both hands off wheel 
2. Left hand off wheel. 
3. Right hand off wheel 
4. Unknown 

NN GTC 
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4.2.7. Testing 

The output labels are categorized into two types, regression-type, and classification-type.  The regression-
type labels, as well as some of the classification-type labels, have been evaluated by visual inspection as no 
manual labels have been available for those auto-labeled features. Such labels include “Eye target”, “Eye 
openness”, “Head pose”, and “Body key-points”. For some of those labels, some of the algorithm output 
results were overlayed with the corresponding videos, which were further inspected visually (see Figure 4.4). 

 

 
Figure 4.4 Test results for Head pose, Eye openness (to the left) and Body key-points (to the right). 

 Auto-labeled features of classification-type for which manual labels have been available, were compared to 
the manual labels available from the project (see sections 4.2.4 and 4.2.5). In this section, testing results are 
presented for “Yawning”, “Phone usage” and “Out of position”. The normalized confusion matrices are 
presented in Table 4.5 
 
  

Table 4.5 Confusion matrix formula.       Table 4.6 Normalized confusion matrix for  
                “Out of position” label 

 
      Table 4.7 Normalized confusion matrix                 Table 4.8 Normalized confusion matrix   

                      for "Yawning" label.                       for "Phone usage" label.  

  

Confusion matrix 
formula 

Auto-labelled 
0 1 

Manually 
labelled 

0 True 
Negative  

False 
Positive  

1 False 
Positive  True Positive  

Confusion matrix for 
“Out of position” 

Auto-labelled 
0 1 

Manually 
labelled 

0 0,89 
 

0,11 
 

1 0,07 
 

0,93 
 

Confusion matrix 
for “Phone usage” 

Auto-labelled 
0 1 

Manually 
labelled 

0 1 0 

1 0,12 0,88 

Confusion matrix 
for “Yawning” 

Auto-labelled 
0 1 

Manually 
labelled 

0 0,99 0,01 

1 0 1 
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5. Results 

5.1. Some statistics of the auto-labeling results 
 
This section presents some statistics of the auto-labeling results. It is organized by video type, DM vs. CM 
(see Table 5.1, as well as Part 1 in Figure 3.3) and by label name (see Table 5.2 , as well as Part 2 in Figure 
3.3) as well as by quality level, “Frame quality” and “Prediction quality”. 

 
Table 5.1 Selected statistics of the results relative to the video type and “Frame quality”. 

# Data Trips Frames Time 
(hours) 

Percentage 
relative to 
the Total 

data 

Percentage 
relative to 

the DM/CM 
data 

1 Total data 149 556 1 530 695 794 42 519 100 % (1) - 
2 Total DM data  130 582 1 238 707 530 34 408 81 % (1) 100 % (2) 

 Total DM data with 
“Frame quality”=1 129 293 979 931 860 27 220 - 79% (2) 

3 Total CM data 135 361 1 379 085 315 38 300 90 % (1) 100 % (3) 

 Total CM data with 
“Frame quality”=1 135 340 1 162 833 816 32 301 - 84% (3) 
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Table 5.2 Selected statistics of the results relative to the feature label and quality. 

# Label 

Frames 
with “Frame 
quality”=1 and 
“Prediction quality” 
above 0 or included 
in the algorithm 

Frames 
with “Frame 
quality”=1 and 
“Prediction quality” 
above 0.25 

% of total DM 
data with 
“Frame 
quality”=1 

% of total CM 
data with 
“Frame 
quality”=1 

1 Eye openness 838 267 462 688 294 828 86 %  
2 Yawning 685 125 n/a 0.07 %  
3 Viewing targets *     
    Forward 794 146 852 n/a 81 %  
    Right 100 573 849 n/a 10 %  
    Left 67 359 520 n/a 7 %  
    Down 19 563 235 n/a 2 %  
    Unknown 53 382 023 n/a 5 %  
4 Head pose     

 
   Head position X 
   Head position Y 
   Head position Z 

979 931 861 968 158 059 99 %  

5 
Phone usage  
(total labelled  
either 1 or 0) 

979 931 860 962 983 729 98 %  

    Phone Usage  
   equal to 1 11 659 857  1.19 %  

6 Body key-points     
    Eye Left  1 127 315 238  97 % 
    Eye Right  1 123 903 539  97 % 
    Nose  1 112 966 034  96 % 
    Ear Left  1 111 155 067  96 % 
    Ear Right  1 118 939 324  96 % 
    Shoulder Left  1 057 058 634  91 % 
    Shoulder Right  1 044 355 143  90 % 
    Elbow Left  924 919 523  80 % 
    Elbow Right  967 384 851  83 % 
    Wrist Left  953 587 082  82 % 
    Wrist Right  988 535 501  85 % 
    Hip Left  660 067 984  57 % 
    Hip Right  667 846 748  57 % 
    Knee Left   300 352 085  26 % 
    Knee Right  391 164 901  34 % 
7 Out of position  259 089 873  22 % 
8 Hands off wheel  277 322 925  24 % 
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* Note that these features are set individually why multiple areas could be detected in the same frame (thus leading to a total of 105 %) 

 

A project collecting data with a naturalistic approach imply that some data cannot be used for various 
reasons. The total amount of data (1) is thus just an indication of the overall availability of any data from the 
data logger standpoint. Collecting data for a period of up to three months, means that cameras can stop 
working, or other issues with the logger arise. To prevent major dropouts, the projects developed an online 
monitoring tool used to visually inspect the data collection phase. For each trip, one image for each camera 
view, minor subset of in-vehicle data, sample from the accelerometer and indication from the GPS, was 
uploaded to this online tool. Since only generating a snapshot, the complete trip was not checked, and for 
time-to-time cameras stopped working. If issues were detected, it was not all easy to get the problems fixed 
at a workshop. Also, there might be video files that cannot be read due to inconsistencies in the data format, 
or having issues related to the data compression algorithm.   

The more interesting figure to look at is the relation between the total labelled frames for either DM(2) or 
CM(3) and so called good quality frames, frames with “Frame quality”=1. For DM videos, this discards any 
frames where a head bounding box is not found, which often could be due to the position of the camera in 
relation to the steering wheel or the position of the hand of the driver. It is seen in the data, that some 
vehicles have an overall higher quality than others. For the DM videos there are 38 vehicles that have 
“Frame quality” =1 in more than 80% of the frames, and in more than 50% of their trips. This is a very strict 
threshold and will help define new trip-based quality metrics to decide which data to use in future research 
projects. It is notable that 105 066 trips have more than 100 seconds of good frame quality.  

In general, the numbers presented in this project for both CM and DM are quite impressive. In this project 
over two billion images were auto labelled where the frame quality is ok. As an additional quality metric, 
many features have their own quality indicator, “prediction quality”, that is available separately or was 
considered in the feature prediction value.  

Looking at the numbers grouped per vehicle it is easy to see over-representation of “Phone usage”. This is 
expected due to behavioural patterns of the drivers. It should be worth stating that using phones was not 
illegal for the course of the EuroFOT project (2010-2011), and only in part of the Drive C2X project (2013). 
However, the public opinion on using phones when driving could have had an effect. At a glance, it was seen 
a decrease in phone usage by -20% in the data collected in 2013 compared to 2010-2011. When excluding 
outliers (6 vehicles in EuroFOT and 1 vehicle in Drive C2X), this effect is even more clear (-70%). “Phone 
usage” is labelled in a total of 9 508 trips.   

Yawning is labelled in 19 530 trips and are usually happen more than one time in the same trip. This could 
support future research on drowsiness.   

For the CM videos, the detected values of body key points are logical; it is easier to detect the face and upper 
body, than the knee or hip. The right side often has a higher detection rate. This should be explained by the 
values are seen from the driver perspective looking forward, and thus the right side is closest to the camera. 
Why the shoulder has a slightly lower value on the right side is difficult to explain, however the rate is fairly 
high to start with (right side 90 % / left side 91 %).   

The indication of “Out of position” need further analysis. A first look indicate that this value is set to true 
where different trips stand out. This feature is over-represented in longer journeys with more than one person 
in the vehicle. It is yet unclear why these trips are over-represented and further analysis is needed.   

It was difficult to detect hands on steering wheel, since sometimes the complete steering wheel was out of 
sight in the video (again depending on the specific position of the steering wheel). Having two hands on the 
steering wheel could be of interest to detect in the future. By manual inspection most of the time the driver 
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has only one hand on the steering wheel and having two hands could potentially indicate a more challenging 
situation (e.g., driving in winter conditions, in city traffic or when performing an evasive manoeuvre). This is 
an area where more analysis is needed.   

Further work on some features could include interpolation. Depending on the feature characteristics, 0.1 to 
0.3 second dropouts could be interpolated to give more stable signals.  

Further steps of analysing this data could be to check if different behaviour (phone usage, not looking 
forward, yawning, as a sign of drowsiness) can be linked to incidents (safety critical events) or increased risk 
in traffic.  Also, research on the driver position in relation to safety critical events, could be of interest. Given 
the actual posture of the driver in these situations, it could be of interest to analyse the posture in relation to 
passive safety systems. 

  

5.2. Analysis of the selected auto-labelled features 
Due to the extensive time required to manually label and analyze the data, the evaluation of the auto-labeled 
features was exclusively done for the two features: “Yawning” and “Phone usage”. Both features belong to 
the classification type, so it was possible to compare auto-labelling results with manual labelling. Within this 
project, it was impossible to manually label all occurrences for those features in the FOT-e dataset. So, a 
statistical method was applied to perform the evaluation of the auto-labeled features and to scale up the 
results to the whole FOT-e dataset. The overall statistical method could be separated into three stages. During 
the first stage the real base rate, real percentage of positive and percentage of negative labels, is defined. 
During the second stage, the real performance metrics are calculated for the balanced dataset (Dataset B), as 
well as the total amount of auto-labelled frames for the full FOT-e dataset. During the third stage, analysis 
results are upscaled for the full FOT-e dataset to obtain estimated performance metrics. 

5.2.1. Stage 1: Real base rate 
The base rate for the feature “Yawning” was calculated using the manually labeled frames of the dataset A 
(900 trips used for the algorithm development) (see Figure 5.1). Out of the total amount of frames, 0.05% 
were positive labels (i.e., yawning) and 99.95% were negative labels (i.e., no yawning). 

 

 
Figure 5.1 Schematic presentation of the Stage 1 of the analysis. Defining real base rate. 
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For “Phone usage”, the split between positive and negative labels in the dataset A was respectively 6.09% 
and 93.91%. The selection of the sample for “Phone usage” was biased by the fact that participants with 
intensive phone activity were selected on purpose, to increase the frame number needed for the algorithm 
development. Therefore, the base rate for the “Phone usage” obtained from manual labelling of the dataset A 
could not be used for the upscaling of the results. Instead, it was decided to look in the literature for a 
surrogate base rate which could be used for the upscaling of the results. Dingus (2014) reported that talking 
and listening on hand-held phone device ranges from 2.25% in 2013 Cell Phones study with 204 participants 
to 2.56% in 100-Car with 109 participants. These studies did not separate between hand-held phone use by 
the ear versus other types of hand-held phone use. Therefore, these base rates are probably an overestimation 
of the base rate that should be used for the upscaling of this project results. To be conservative, the smaller 
value (2.25%) among the two studies was taken as a base rate for the upscaling of the “Phone usage” in this 
project. 

5.2.2. Stage 2: Total amount of labeled frames and Real performance metrics for the 
balanced set 

 

The schematic representation of the stage 2 is shown in Figure 5.2. 

 
Figure 5.2 Schematic presentation of the Stage 2 of the analysis. Defining total amount of the auto-labeled frames, as 
well as the real number of TPs, FPs, TNs, FNs for balanced positive and negative labels. 

Both “Yawning” and “Phone usage” features were auto labeled using DM videos. The total amount of auto-
labeled trips on the full FOT-e dataset became 130 582, which corresponded to 1 238 707 530 frames. 
Among those frames, a balanced set (Dataset B) with an equal amount of positive and negative labels was 
selected for each feature, Dataset B1 for “Yawning” and Dataset B2 for “Phone usage”. Balanced sets 
contained drivers and trips that were not used in the algorithm development, to evaluate the algorithm in the 
most “demanding” situations (i.e., unbiased data). The size of the balanced set was chosen to be made of 160 
frames: the number of frames was selected considering the time-constraints for the manual labelling process 
and the analysis of the data. This biased selection of an equal number of positive and negative labels was 
introduced because the rates of positive labels for both “Yawning” and “Phone usage” were low and it was 
required to obtain a minimum number of entries for each cell of the confusion matrices for “Yawning” and 
“Phone usage”. Since part of the time for the manual labeling process requires finding and opening files, we 
tried to take larger advantage of the manual labeling process by manual labeling 10 seconds before and 10 
seconds after the extracted frames. So, the aim was to obtain 160 segments of 20 seconds manually labeled 
for both yawning and phone use. 

Out of the 160 segments originally selected for “Yawning”, 11 were excluded due to data quality issues (e.g., 
it was not possible to play the video). So, the Dataset B1 for the analysis of “Yawning” included 149 
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segments, 76 segments with central frame auto-labelled as 0 and 73 segments with central frame auto-
labelled as 1. The confusion matrix resulting from the comparison of the manual labels performed by two 
students and the auto-labels made by the algorithm is reported in Table 5.3  

 
Table 5.3 Confusion matrix for “Yawning”. 

Confusion matrix 
for “Yawning” 

Auto-labelled 
0 1 

Manually 
labelled 

0 74 8 

1 2 65 
 
 

 
Table 5.4 Normalized confusion matrix for “Yawning”. 

Confusion matrix 
for “Yawning” 

Auto-labelled 
0 1 

Manually 
labelled 
 

0 0.90 0.10 

1 0.03 0.97 

 
 

Normalized confusion matrix ca be compared to the confusion matrix from development and the results look 
quite similar, which mean s that the algorithm has stable performance. 

The performance metrics for the analysis of “Yawning” are reported below. 

Precision  = 
TP1 

= 
65 

= 89.04% (1) 
TP+FP2 65+8 

 

 

Recall  = 
TP 

= 
65 

= 97.01% (2) 
TP+FN3 65+2 

 

F1 score  = 
2   

= 
2   

= 92.85% (3) 1 + 1 1 + 1 
Precision Recall 89.04% 97.01% 

 

Sensitivity  = 
TP 

= 
65 

= 97.01% (4) 
TP+FN 65+2 

 

Specificity  = 
TN 

= 
74 

= 90.24% (5) 
FP+TN4 8+74 

 

 

Out of the 160 segments originally selected for “Phone usage”, 11 were excluded due to data quality issues. 
The Dataset B2 for the analysis of “Phone usage” included 149 segments, 69 segments with central frame 
auto-labelled as 0 and 80 segments with central frame auto-labelled as 1. Note that the Dataset B1 and B2 
were different, because they were obtained from two different samples (the automatic labels for “Yawning” 
and “Phone usage” respectively). The confusion matrix resulting from the comparison of the manual labels 
performed by two students and the auto-labels made by the algorithm is reported in Table 5.5 and Table 5.6 

 
1 TP is the acronym for True Positive 
2 FP is the acronym for False Positive 
3 FP is the acronym for False Negative 
4 TN is the acronym for True Negative 



 
 

 

FOT-e Project report, Vinnova Diarienr: 2019-03095 
Rev. 20 november 2023 

 Page 25(39) 
 

 

 

 
   Table 5.5 Confusion matrix for “Phone usage”. 
 

Confusion matrix for 
“Phone usage” 

Auto-labelled 
0 1 

Manually 
labelled 

0 69 30 

1 0 50 
 
 

 
Table 5.6 Normalized confusion matrix for “Phone 
usage”. 

Confusion matrix for 
“Phone usage” 

Auto-labelled 
0 1 

Manually 
labelled 

0 0.70 0.30 

1 0.00 1.00 
 
 

 

The performance metrics calculated with the formulas (1) to (5) for the analysis of “Phone usage” are 
reported below. 

Precision  = 62.50%  
 

Recall  = 100.00%  
 

F1 score  = 76.92%  
 

Sensitivity  = 100.00%  
 

  

Specificity  = 69.69%  
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5.2.3. Stage 3: Estimated performance metrics for the full auto-labelled dataset 
The schematic presentation of the stage 3 is presented in Figure 5.3. 

 
Figure 5.3 Schematic presentation of the stage 3 of the analysis. Upscaling of the performance metrics. 

 

For the “Yawning”, the expected number of positive and negative values in the FOT-e dataset is calculated 
below, considering that there are in total 1 238 707 530 frames in the dataset: 

1. The expected number of frames which have a positive label is 1 238 707 530 * 0.05% = 619 354 
2. The expected number of frames which have a negative label is 1 238 707 530 * 99.95% = 1 238 088 176 
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The expected numbers of TN, FP, FN, and TP are: 

TN  = 1 238 088 176 
 

* 
74 

= 1 117 299 086  
 82 

 

FP = 1 238 088 176 * 
8 

= 120 789 090  
82 

 

FN = 619 354 * 
2 

= 18 488  
67 

 

TP = 619 354 * 
65 

= 600 866  
67 

 

The expected confusion matrix for the full FOT-e dataset after the upscaling procedure is reported in  

Table 5.7. 

Table 5.7 Confusion matrix for “Yawning” for the whole FOT-e dataset. 

Confusion matrix for 
“Yawning” 

Auto-labelled 

0 1 

Manually 
labelled 

0 1 177 299 086 120 789 090 

1 18 488 600 866 

 

The performance metrics – calculated with the formulas (1) to (5) – for the confusion matrix of “Yawning” 
for the full FOT-e dataset are reported below. 

Precision  = 0.49%  
 

Recall  = 97.01%  
 

F1 score  = 0.97%  
  

Sensitivity  = 97.01%  
 

Specificity  = 90.24%  
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For the “Phone usage” using the base rate of 2.25%, we obtained the expected number of positive and 
negative values in the FOT-e dataset with the calculation below.  

1. The expected number of frames which have a positive label is 1 238 707 530 * 2.25% = 27 870 919 
2. The expected number of frames which have a negative label is 1 238 707 530 * 97.75% = 1 210 836 611 

 

The expected numbers of TN, FP, FN, and TP are: 

TN  = 1 210 386 611 * 
69 

= 843 916 426  
99 

 

FP = 1 210 386 611 * 
30 

= 366 920 185  
99 

 

FN = 27 870 919 * 
0 

= 0   
50 

 

TP = 27 870 919 * 
50 

= 27 870 919   
50 

 

The expected confusion matrix for the FOT-e dataset for “Phone usage”, after the upscaling procedure is 
reported in Table 5.8. 

 

Table 5.8 Confusion matrix for “Phone usage” for the whole FOT-e dataset. 

Confusion matrix for 
“Phone usage” 

Auto-labelled 

0 1 

Manually 
labelled 

0 843 916 426 366 920 185 

1 0 27 870 919 
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The performance metrics – calculated with the formulas (1) to (5) – for the confusion matrix of “Phone 
usage” for the whole FOT-e dataset are reported below. 

 

Precision  = 7.06%  
 

Recall  = 100.00%  
 

F1 score  = 13.19%  

 

Sensitivity  = 100.00%  
 

Specificity  = 69.69%  
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6. An example of application:  
Head kinematics during braking in naturalistic driving 

Alberto Morando – alberto.morando@autoliv.com (Autoliv Development AB) 

6.1. Introduction 
Tests of restraint systems can be done with volunteers and postmortem human subjects (PMHs), or with 
human surrogates such as anthropomorphic test devices (ATD; also known as crash test dummies) and 
human body models (HBM). Human surrogates can, in general, accurately mimic human kinematics and 
injury risk in crashes. At the same time, tests procedures need standards so that they are valid, repeatable, 
and reproducible. However, while a test configuration may be standard, it may deviate from how people 
naturally drive their car (Cullen et al., 1996; Manary et al., 1998; Reed, 2017). For example, volunteers, 
PMHs and ATDs may be positioned upright and at a certain distance to the steering wheel, but a regular 
driver may often slouch or sit closer to the steering wheel (Reed, 2017). Also, HBMs can simulate muscular 
response due to occupant bracing, but bracing depends on the specific traffic conflict and other human 
factors (Östh et al., 2013; Pei et al., 2022). 

Naturalistic data and videos can provide insights on how people drive and respond to impending traffic 
conflicts so that testing of restraint systems is valid (Cullen et al., 1996; Manary et al., 1998; Reed, 2017). 
Naturalistic driving data can inform on initial conditions (e.g., sitting position) and behavior during pre-crash 
situations. However, crash tests also require specifications of anthropometric data and vehicle interior 
dimensions that cannot be retrieved from naturalistic driving data or at the required accuracy (Reed, 2017). 
Therefore, naturalistic data need to be eventually complemented with other data sources, such as laboratory 
experiments or test-track tests (Östh et al., 2013). 

The goal of this analysis is to compare measurements of head kinematics from naturalistic data with the 
initial head position in current crash test setups. As a first proof of concept, we focused on frontal crashes; 
frontal crashes are the most common type of crash and are easier to reliably extract from a large naturalistic 
database based on vehicle acceleration. The results of this analysis can be used to validate and otherwise 
improve the bio-fidelity of human body models as well as identify critical scenarios for which 
countermeasures are needed and shall be developed. 

6.2. Methods 
Data are drawn from the EuroFOT and DriveC2X naturalistic driving study as processed in the FOT-e 
project. This analysis is based on a collection of driving segments that consist of 5 s of driving around the 
onset of a hard braking (safety critical event). The segments were selected according to the following 
inclusion criteria: 

 In the 5 s before the braking onset, driving was on a straight road and in steady-state, free-flow 
conditions. This meant a turning radius r larger than 1000 m (r = speed / yaw rate), speed above 30 
km/h, and a longitudinal acceleration between ±1.5 m/s2; 

 A braking that produced a deceleration of at least 8 m/s2 within 1 s after the braking started. 

The videos of each event were reviewed to verify that a braking did happen so events were automatically 
discarded if the videos sources (front, cabin, feet, and head-tracker channels) were not available or not 
clearly visible. At the time of the analysis, we did not have information on adaptive cruise control (ACC) use 
or autonomous emergency braking (AEB) interventions.  
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Driving segments included data about vehicle speed, longitudinal acceleration, and head location over time. 
All data was recorded at 10 Hz. Vehicle speed and longitudinal acceleration were recorded from the CAN 
bus. Head location was estimated by a machine learning algorithm that is proprietary to Smart Eye (no extra 
training was done on the EuroFOT/DriveC2X data). The algorithm yields the location of the nasion (a point 
on the face in between the eyes in a world xyz reference frame with an accuracy of ~3%. The origin of the 
world reference system is fixed on top of the steering wheel column right in front of the head tracking 
camera (Figure 6.1). Because we did not have the installation schematics of the camera but just an image 
from an old report (Selpi et al., 2011), we approximated its location by measuring a similar vehicle (Volvo 
V70 MY 2008) and estimated where the camera could have been positioned (Figure 6.1). We kept these 
measurements fixed throughout the analysis even if drivers may have adjusted the settings of the seat and 
steering wheel. If drivers did make some adjustments, the settings could not be retrieved from the data 
anyway. 

We retrieved the distance from the nasion and the steering wheel top and center (respectively the distance d
and e in Figure 6.1) with a transformation of coordinates. Point a has coordinates (0, 120.5 mm, 170 mm) in 
a reference frame W’ rotated by 20° around the x axis of the world frame W. Point b has coordinates (0, -70 
mm, 170 mm) in W’. The location of c in the reference W, instead, comes directly from the head-tracking. 
The coordinate transformation resulted in the following equations:

where

with 

Wd = Wc – Wa
We = Wc – Wb

Wa = WRW’
W’a

Wb = WRW’
W’b

W’a = (0, 120.5, 170)
W’b = (0, -70, 170)
WRW’ = R(x, 20°)

(1)
(2)

(3)
(4)

(5)
(6)
(7)

We used the head location data in two distinct ways. First, we used the head location in the -2 to -1 s interval 
to get an overall location baseline. Second, we normalized each head-location series with respect to its initial 

Figure 6.1. (Left) Location of the camera used for the naturalistic data collection from Selpi et al. (2011). 
Unfortunately, the installation details are unknown. Therefore, the camera location with respect to the steering 
wheel was guessed based on measurements in a similar vehicle (Volvo V70 MY 2008). (Right) Diagram 
summarizing the measures used in this paper to retrieve the distance d between the nasion and the point a on top of 
the steering wheel. The schematic is not to scale.
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value at the -2 s mark to get the relative head movement during braking. The normalized series were then 
aggregated and summarized by their median and interquartile range (IQR; 25th—75th quantiles). Quantiles 
are a more suitable summary statistics for noisy and asymmetric data distribution (Rousselet & Wilcox, 
2019). Sometimes, the head tracking resulted in loss of data. Gaps shorter than 0.5 s were interpolated (cubic 
interpolation via the Matlab pchip command), otherwise they were kept as missing data. We excluded 
driving segments with a proportion of missing data above 50%.  

In the end, there were 21 segments that fulfilled the inclusion criteria and had good quality data. The 
segments were from 17 drivers (3 females). 

6.3. Results 

 
Figure 6.2. Distribution of head distance to steering wheel in the -2 – -1 s interval before the braking. Distance d is 
the distance between the nasion and the steering wheel top. Distance e is the distance between the nasion and steering 
wheel center. 

 

Most drivers were attentive. In only one event, the driver was engaged in a distracting activity (texting). All 
drivers kept at least one hand on the steering wheel. All drivers also appeared to sit properly, without 
egregious deviations from a normal upright posture. In general, the median distance d was 520 mm (IQR = 
504 – 583 mm); the median distance e was 655 mm (IQR = 642 – 715; Figure 6.2). 

Videos review indicated that all events were braking maneuvers initiated and controlled by the driver to 
respond to a sudden change in the traffic environment (e.g., animals crossing, lead vehicle unexpectedly 
braking or changing lane). In all events, drivers braced against the steering wheel, and this limited head 
excursion at and after the brake onset; the IQR for distance d was within ±9 mm overall, while the IQR for 
distance e was within -8 – 12 mm (Figure 6.3). The time-course of the xy head coordinates in the W frame 
shows that the median head excursion in the y axis was up to 15 mm, but the respective movement in the z 
axis was only 0.7 mm (Figure 6.4).  

Despite the head excursion being minimal, there was a trend that indicates than in the 1 s after the braking 
onset, drivers first pushed away and then they got closer to steering wheel as the car decelerated (Figure 6.3). 
This trend is more noticeable in the event with a distracted driver—a later and more rapid braking compared 
to the other events was associated with a larger head movement (this event is highlighted in Figure 6.3 and 
Figure 6.4). 
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Figure 6.3. Median (thick line) and interquartile 
range (25th – 75th quantiles; thinner lines) of 
vehicle acceleration (top panel) and head distance 
to steering wheel relative to its initial distance 
(middle and bottom panel). Delta d is the 
displacement of the nasion with respect to the 
steering wheel top. Delta e is the displacement 
between the nasion and steering wheel center. In 
each panel, the vertical dashed line in each panel 
represents the start of the braking. The graphs x-
axes indicate the relative time to the braking start. 
The event involving a distracted driver is 
highlighted with a red dashed line. 

Figure 6.4. Median (thick line) and interquartile 
range (25th – 75th quantiles; thinner lines) of 
vehicle acceleration (top panel) and head location 
in y/z coordinates relative to its initial location 
(middle and bottom panel). In each panel, the 
vertical dashed line in each panel represents the 
start of the braking. The graphs x-axes indicate the 
relative time to the braking start. The event 
involving a distracted driver is highlighted with a 
red dashed line. 
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6.4. Discussion and conclusions 
Observations of natural drivers position found an average separation between the nasion and the steering 
wheel top (distance d in Figure 6.1) of 581 mm (standard deviation = 64 mm), and a median separation 
between the nasion and the steering wheel center (distance e in Figure 6.1) of about 500 mm (Cullen et al., 
1996; Parkin et al., 1995). Our measurements deviate from these early observations, and the greater deviation 
is for the distance e. Perhaps, this discrepancy is due to drivers and vehicles type distribution (Cullen et al., 
1996; Parkin et al., 1995), which highlights the complexity of defining a minimal set of test procedures that 
can be representative of a large population of drivers and vehicles. 

The typical position of the latest SAFER HBM (Pipkorn et al., 2023) in a frontal crash test is so that d = 500 
mm and e = 600 mm. While the head distance in a SAFER HBM deviates from early naturalistic 
observations (Cullen et al., 1996; Parkin et al., 1995), it is reasonably close to our current findings (Figure 
6.3). It is unknown what is the safety impact of a delta in the range of 20 – 55 mm between the ATD’s 
configuration and a natural driver posture, but this could be investigated in future analyses. 

Data from a test track experiment in which drivers braked to a full stop with the maximum braking power of 
the vehicle (about 1 g) showed an average head displacement in the yz direction of about -8 mm and 50 mm, 
respectively (Östh et al., 2013). These results are not consistent with the general trend we found. The 
displacement along y was of similar magnitude, but the opposite sign; the displacement along z was larger 
(Figure 6.4). This discrepancy could be explained by a more pronounced upper body movement (and 
rotation) due to a stronger (and longer) braking maneuver in the tests by Östh et al. (2013). In general, the 
deceleration in our events was maintained for less than 1 s (Figure 6.3), whereas the deceleration in the tests 
by Östh et al. (2013) lasted for about 2 s. Because it is difficult to find a large sample of strong and sustained 
braking events in our naturalistic data, future work may be required to compare our results to brake pulse 
tests or simulations.  

In the past, researchers found that ATDs were positioned more forward relative to humans (Cullen et al., 
1996; Parkin et al., 1995). This discrepancy was problematic because restraint systems are designed based on 
crash performance predicted from the initial seating positions of ATDs. Our results show that nowadays 
crash simulations are a much closer representation of real-world driving. However, the naturalistic data we 
used lacked attributes such as driver anthropometry and cabin geometry. A new naturalistic data collection 
with accurate calibration, as done by Reed et al. (2017), would be required to obtain such granular 
measurements. Regardless, naturalistic data not collected for the specific purpose of restraint system design 
remains a valuable source of information to ensure that crash tests and simulations are close to real world 
driving. 
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7. General project discussion and conclusions  
At SAFER, an updated FOT database is now available where two features (phone use and yawning) are 
automatically labelled by the classification algorithm developed and tested within the project. The results 
obtained from the evaluation of these two features show that the automatic labelling can be successfully used 
to extract data from the whole FOT-e dataset. The normalized classification matrices show small rates of 
false positive and false negative for yawning. With respect to phoning, the rate of false positive is higher than 
for yawning, but this is not considered a limitation given the future use of the classification algorithm (i.e., 
use the classification algorithm to select relevant data, which need to be manually labelled by annotators). 
For that, it is rather important to limit the rate of false negative which would cause missing classification of 
phone use in the FOT-e dataset. The evaluation of the phone use feature shows that this is achieved since the 
rate of false negative is very low. The automatic labelling of the data conducted within the project will save 
time in analyses related to yawning and phone use because it will facilitate the identification of these features 
in the whole dataset. This has resulted in an improved and better dataset through semi-automatic labelling, 
available for future research at the SAFER community. 

In industrial usage, for passive safety positioning benefits, the naturalistic data is the gold standard for 
driver behaviour analysis and testing of active safety systems. Here, we can use this data source to inform 
testing and design of restraint systems that are usually carried in lab experiment or well constrained close 
track tests. Off the shelf algorithms can be used on old data to pull out new features for safety research. That 
is, the analysis of head distance did not need a new, long, expensive data collection. New features from FOTe 
have also a great potential to study driver posture in normal driving and in critical situations. However, those 
features need to be calibrated (e.g., from body key points in the image reference frame to key points in a 
world coordinates). The calibration could be eased in future study by equipping vehicles with calibrated 
camera and markers (e.g., to keep track of seat, seatbelt, steering wheel position over time). The information 
in the collected naturalistic data can be used to improve testing of restraint systems, so that they are close to 
real world driving situations and they can help identifying needs to develop new safety systems altogether. 
However, naturalistic data lacked attributes such as driver anthropometry and cabin geometry that are key 
information to set up standard crash simulations. Naturalistic data collection with accurate calibration of 
passengers and cabin dimension can be collected, but it is a considerable effort (Reed et al., 2017). 
Regardless, even naturalistic data not collected for the specific purpose of restraint system design, remains a 
valuable source of information to ensure that crash tests and simulations are close to real world driving. 

  For the eye-tracker industry, the result can be used in lower-level automatic annotated features, to 
develop algorithms for higher level features, such as drowsiness from yawning and eye closure. The 
improved data can use the derived process/methodology for auto annotation for other datasets, to get more 
labelled datasets, or other features. It is also possible to use this experience to see what features on low-
resolution videos can be reliably and not reliable auto annotated data, and use this experience for limitation 
of feature annotations, both manual and automatic labelling. 

  For future research, the partners have suggested to improve the 3D information of body posture of the 
driver.  Regarding camera quality and positioning, future work should focus on improving camera resolution 
and correct positioning/camera view, also during night-time. There by new positions would increase the 
possibility to classify hands-on wheel. Future research should also focus on the evaluation of the feature 
viewing target which is extremely important for research on driver behaviour. The processing is time 
consuming, so the time proportionally increases with the number of features selected due to the extensive 
time required for manual labelling. Therefore, efforts should be taken to optimize the algorithms. Future 
efforts should also evaluate access to streaming data, and how to process data in embedded systems, or in 
uploaded in real-time. 
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Appendix A: Auto-labelled features description 
 

Eye openness 

Eye openness or Eyelid opening, describes how open the driver eyes are in a frame. It is a floating-point 
value in the range [0.0, 1.0].  The value is predicted by a neural network, and then min-max normalized per 
recording. No extra training has been done for this feature for FOT-e data. 

Yawning 

Yawning output contains a Boolean stating whether the driver is yawning. The value is predicted using a 
statistical model, with the inputs mouth opening value, eye openness value, phoning value, and laughing 
value. 

 

Viewing target 

The viewing targets module provides information on what the driver is currently looking at. Viewing targets 
are geometrical shapes to represent the environment around the driver. In this case we used 4 planes: left, 
right, forward, and down (see Figure 0.1). For every target plane the output is a Boolean, where a value equal 
to one represents an intersection point between the viewing direction and a viewing target. Only intersections 
that have a higher probability than 0.5 are counted. In absence of intersection with the defined planes or 
high-quality intersection eye_target_unknown is reported. No extra training has been done for this feature for 
FOT-e data, however, the world model has been updated to fit the recording better. 

 

 
Figure 0.1 Viewing targets as geometrical shapes representing the environment around the driver. 
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Head Pose 

Head pose output includes head position and orientation. The head position(x,y,z) is expressed in reference 
coordinate system and the head orientation is defined around nominal head pose and expressed in heading, 
pitch, and roll. 

 Rotation around y axis of nominal head pose (heading) represents looking left or right, with positive 
values representing right. 

 Rotation around x axis of nominal head pose (pitch) represents looking up or down, with positive 
values representing down. 

 Rotation around z axis of nominal head pose (roll) represents tilting left or right, with positive values 
representing right. 

The pose is predicted using a neural network and no extra training has been done for FOT-e data. 

Phone usage 

Phone usage attribute states whether the tracked subject is talking on a phone or holding it to the ear with the 
left/right hand. The value is predicted using a neural network. 

 

Body key-points 

For estimating the driver posture, we use a neural network that estimates human pose, by predicting 15 core 
body key-points in pixel coordinates with the origin in the top-left corner. The 15 core points are: Nose, Two 
Eyes, Two Ears, Two Shoulders, Two Elbows, Two Wrists, Two Hips, Two Knees. For each key-point a 
quality factor is also predicted. No extra training has been done for FOT-e data. 

Out of position 

Out of position is a binary signal indicating whether a person is out of position compared to the neutral 
seating position. Situations considered out of position are  

1. If the head is shifted by at least 100mm to either side from the centre of the seat headrest. 
2. If the head has a distance of at least 100mm to the seat headrest. 
3. If the head is lateral shifted by at least 100mm and longitudinal 100mm away from the seat headrest. 
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For predicting head position, the most important key-points are the torso key-points. As the drivers’ body and 
the camera pose is different across different recordings, normalizing torso points considering the in-position 
pose in each recording improves the algorithm generalization. One could assume that in a recording most of 
the time the driver is in-position, so the mean of high-quality torso key-points can be assumed to be the in-
position body pose. After the normalization, a statistical classification model (Random Forest) has been 
trained with the normalized torso points to predict the in-position and out-of-position. 

It is note-worthy that for this feature, we only had 10 mins of manually labeled data, so the evaluation results 
might not be very generalizable. 

Hands off steering wheel 

As all the cars used in the dataset have the steering wheel on the left side, one could draw a steering wheel 
polygon region and predict hands-off-wheel using that region and the hands position.  

As the camera pose is different across different cars, the steering wheel regions needs to be assumed in a 
conservative way. 

If the wrist point’s distance to the steering wheel polygon is more than the size of a hand, the hand is set as 
off the wheel. If it is inside the region or closer than a hand-size to the region, the hands-off-wheel prediction 
is set to unknown for both hands. No extra training has been done for this feature for FOT-e data. 

Frame quality for DM 

The frame quality is defined as if the recording frame quality has been acceptable enough so that algorithm 
has been able to predict the head bounding box. 

Frame quality for CM 

The frame quality is defined as if the recording frame quality has been acceptable enough so that algorithm 
has been able to identify the object on the driver seat as a person. 


