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Executive Summary

Sensai Analytics and Volvo Group successfully demonstrate the use of data-based 
forecasting of (i) battery capacity fade, and (ii) battery residual value in arbitrage and 
frequency response markets.

PProblem: Volvo Group sells battery electric trucks and digital services for monitoring them. Predicting the 
wear and remaining useful life of the batteries in these vehicles, to plan for maintenance, leasing 
agreements, and range estimations, remains a major challenge owing to the lack of historical performance 
data available. Furthermore, there are significant opportunities to reuse retired electric vehicle (EV) 
batteries in new applications, but lifecycle decisions can be difficult to make. 

Solution: Sensai Analytics is a data-driven battery analytics startup located in Greentown Labs, Somerville, 
MA, & Cork, Ireland. Their core team is comprised of world-leading battery scientists and machine learning
engineers from MIT, Georgia Tech, & Trinity College Dublin. Sensai is bringing to market its Li-ion battery 
monitoring solutions, that builds upon a unique combination of technologies that enable easier creation
and scaling of machine learning models for data-driven batteries. These technologies are based on 
Sensai’s in-house expertise in and battery analytics and second-life techno-economics, that aim to 
massively simplify decisions made across a battery’s lifecycle and whether to refurbish, reuse or recycle?

In this proof-of-value (POV) project, Sensai Analytics demonstrated data-based approaches to useful life 
and residual value forecasting, and quantified their value. In short, a data-based lithium-ion capacity fade 
model was trained using Volvo Truck’s own data, to show the effectiveness of the methods, while to 
provide insights into the value of reusing batteries, the project demonstrated a residual 
value modelling approach that quantified the value of retired Volvo Truck batteries in multiple 
reuse scenarios.

Value:: The value of Sensai Analytics technology is shown to potentially provide a 23% boost in Electric 
Truck Lifetime Productivity if used to extend a vehicle’s first-life by 2 years (or 25%), or 9% if used to find 
the optimum point for battery removal. Given the early stage of the electric truck and battery reuse 
markets and the developing nature of battery supply chains, however, many assumptions are required to 
model the value generated by Sensai Analytics and these numbers will be further evaluated in any future 
engagements.
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1. Project Summary

Problem Statement: Volvo Trucks is engaged in a long-term plan to offer a fossil-free commercial vehicle 
line-up by 2040, with their first electric trucks currently entering the market. A core component of their 
electrified products are the lithium-ion batteries used for energy storage that account for a significant 
portion of the bill of materials for each vehicle. It is known that the ability of these batteries to store energy 
will degrade over time, reducing the driving range of the vehicles. The nature of the trucking industry, 
however, means each vehicle will be subjected to very different usage patterns in terms of cycling, charging, 
and temperature, making it extremely difficult to plan for the management of battery maintenance, 
replacement, and reuse across all vehicles. Furthermore, the rapid pace of electrification of the transport 
industry, means a significant barrier to forecasting how individual batteries will degrade over time, is simply 
a lack of data, with very few vehicles in the field and even less having ‘aged-out’ their batteries. 
Given that batteries are the most expensive component in the vehicle, it is imperative to manage these assets 
across their full life cycle, in order to extract as much value as possible. 

Phase 1 scope: The creation of accurate data-based lithium-ion battery wear models for electric vehicles 
remains a significant challenge for the industry owing to the difficulty and expense involved in conducting 
accelerated aging tests that cover all possible use cases, while the use field data is difficult owing to its 
usual format, and the lack of adequate validation data of battery state-of-health collected in the field. In 
vehicles, for example, the data collected on battery usage is often in the form of histograms of time spent 
in different operating regions, as stored in the BMS.  Sensai Analytics’ have solved these problems by 
developing machine learning approaches that uses as model inputs, features related to histograms of the 
time batteries spend in different operational ranges of current, voltage, power and temperature, to learn how 
a battery’s state-of-health changes over time. This supervised machine learning approach learns an initial 
model with lab data collected during accelerated aging tests, and then adapts to field data over time using 
online adaptation.  In this phase of the POV, Sensai Analytics applied part of their technology to Volvo 
Trucks’ lab data to prove the accuracy of their methods, and show how histograms of operational ranges 
are adequate for creating accurate data-based models of capacity fade, and could potentially be used to 
forecast battery remaining useful life using typical electric driving patterns. 

Phase 2 scope: Over the coming years, a fleet of millions of lithium-ion batteries that will be deemed 
unsuitable for the rigorous trucking duty cycle/environment after a number of years operation, but still 
containing significant value for other applications, will become available to OEMs. These used batteries 
present a massive financial opportunity for Volvo Trucks as they can be repurposed for new applications 
where the duty cycling and current levels are less onerous than EV driving — potentially increasing a 
battery’s lifetime value and postponing the eventual cost of recycling, while also providing 
environmental/sustainability benefits by reducing resource use. In the second phase of the POV, the residual 
value of different reuse applications for Volvo Truck batteries were quantified, demonstrating how the 
methods could be used to solve the key question of battery grading, i.e., when is the optimum end of the 
first-life? and whether to refurbish, reuse, or recycle? 
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2. Results

Phase 1: Data-based remaining useful life (RUL) forecasting 

1.1 Data sharing after pre-processing and feature engineering stages.

The first step in the project was for Volvo Group to pre-process and then share data with Sensai. The data 
pre-process is described in detail in the document: “Sensai Analytics_Data Requirements_1April2022 
.pdf”, and is only briefly summarized here. 
The model training process creates a data-driven model that forecasts ΔSOH (%) across a period, Δt, based 
on histograms of the time a cell spends in different operating ranges of Voltage, Current, Temperature and 
Power, during that period. The first processing step is to start by dividing the complete SOH history into 
segments of width, Δt. Δt does not need to be constant, and is typically in the range of hours – i.e. in this 
project 8, 12, 24, and 100 hours were used. For each segment, Δt, the time series of V, I, T, & P are converted 
from raw time series into histograms of the time spent in different operating ranges, based on bins provided 
in the requirements document. After feature engineering, a complete labelled data point for each segment 
consists of: time elapsed since start of experiment, Δt, ΔSOH, and histograms of time spent in different 
operating regimes of current, voltage, power and temperature regimes (as outlined in Figure 1 (a)).
In this project, the data pre-processing and sharing was conducted twice, with Volvo Trucks uploading the 
prepared data sets to a shared project Sharepoint to provide the Sensai team with access. Data from 9 cells 
(Cells 201 - 209) was shared, with separate csv files provided containing the relevant features and target 
variables for each cell. The state-of-health data for each cell is shown in Figure 1 (b) and shows the variation 
between the cells which were each subjected to different cycling conditions – information on which was 
not shared with Sensai.

(a) (b)
Figure 1: (a) overview of a labelled data point for each segment consists of: time elapsed since start of experiment, 
Δt, ΔSOH, and histograms of time spent in different operating regimes of current, voltage, power and temperature 
regimes, and (b) the state-of-health data for each cell shared by Volvo Group.
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1.2 Lithium-ion prognostics model training using lab measurements of capacity fade for Volvo 
Group’s batteries
In the next step, a machine learning process was undertaken by Sensai to learn from the data provided, and 
create a data-based battery degradation model. The method used is not described here but an overview and 
technical details were provided previously in the original scope of work and data requirements document. 

The first training process undertaken was a simple data split where data from all cells was divided into 
training, validation and testing sets in a 60% : 20% : 20% split. While this means data from the same cells 
will be in both the training set, and the test set, given the small amount of data available, and Sensai not 
knowing whether their methods would work with Volvo Truck’s data (the point of this POV), this was 
considered a useful first step to ensure the modelling process was able to learn from the data provided. 
Figures 2 (a), (b), and (c) show the results, predicted versus actual ΔSOH (%), for a model trained on the 
training data and applied to the validation and test set. Referring just to the test set, the model showed good 
accuracy and a strong ability to learn from this data with RMSE, R2, and MAPE values of 0.0041, 0.954 
and 5.7% respectively. Separately, histograms of the absolute difference between the predicted and actual 
ΔSOH values for the training and test data are shown in Figures 3 (a) & (b) to provide an overview of their 
distribution.

(a) (b) (c)
Figure 2: Scatter plots of (a) the Predicted versus Actual ΔSOH (%) for a model trained on the training data and, 
(b) applied to the validation and, (c) test set.

(a) (b)
Figure 3: Absolute error histograms for the (a) training and, (b) testing data.
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Having confirmed through this simple first step that Sensai’s machine learning approach can be applied to 
the provided data, a more rigorous machine learning task was undertaken. In the next experiments, a data-
based battery degradation model was trained using the data from 8 of the cells available and then tested 
against the remaining one. The purpose of these ‘leave-one-out’ experiments was to check how well the 
model learns from multiple cells and then generalizes to data not seen before, i.e. a new cell. This is a better 
representation of how a machine learning model would be used in practice, i.e. trained on lab data and then 
used the estimate the SOH and remaining useful life of the pack or modules in a new vehicle for which 
there is no data available.
The results of these experiments are show in Figure 4 with the error metrics for each one summarized in 
Table 1. In total, 9 experiments were undertaken, with each cell excluded once. The figures show that, in 
general, models trained on data from 8 cells, and then tested on the excluded one, model very accurately 
the decrease in SOH of the test cell over time, a very positive result given that all of these cells are cycled 
under different operating conditions (not known to Sensai) which shows the data-based approach 
generalizes well to different operating conditions.
It is worth noting the inaccuracy in the experiment performed with Cell 203 as test. Cell 203 is the only cell 
in the data set that contains data where the cell was cycled under dynamic conditions. Given the unique 
nature of these operating conditions, compared to the other cells, a model trained on data from the 8 other
cells did not generalize well in this case. This is not surprising, and future experiments would clearly benefit 
from having more data from cells cycled under dynamic operating conditions.
Most promisingly, it can be seen that the models pick-up the transition from the early ‘non-linear’ aging 
process to the later ‘linear’ stage with good accuracy for all cells. This is important behaviour to capture 
when modelling the battery packs in trucks, and suggest this method might also be able to estimate/forecast
the even later stage ‘knee-point’ in battery aging, although very large data sets would probably be required 
to test that appropriately.

Figure 4: Plots of the actual (green) versus forecasted (blue) SOH trajectory for the 9 cells used as test cells in the 
‘leave-one-out’ experiments.
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Table 1 shows the error metrics from the nine experiments. In general, most RMSE values remained low 
while the majority of R2 values are greater than 0.8. The average MAPE (excluding Cell 203) of 21% is 
slightly higher than would be hoped, but it is worth noting that the ground truth for these experiments is the 
~100% SOH at the start, and any error compounds across the whole SOH trajectory/battery aging, as 
another ground truth is not used at any stage, but the trajectory forecasted from the start only.

Table 1: Error metrics for the 'leave-one-out' experiments on Volvo Group's data.

Cell Name Type RMSE MAPE (%) R2

cell_201 Test 0.005 17.3 0.841

cell_202 Test 0.004 10.8 0.955

cell_203 Test 0.015 109 0.393

cell_204 Test 0.004 11.9 0.948

cell_205 Test 0.008 14.9 0.785

cell_206 Test 0.010 53.6 0.580

cell_207 Test 0.007 17.4 0.886

cell_208 Test 0.005 14.8 0.920

cell_209 Test 0.017 32.1 0.543

Average (excl. 203) - 0.0075 21 0.81

1.3 Compare to larger open-source data set
Given the relatively small size of the data set available from Volvo Tucks, and Sensai’s prior work with 
open-source data sets, it was decided to run the same experiments on data provided on the aging of NMC 
batteries under different cycling conditions measured and made public by Sandia National Labs. This data
set contains experimental measurements on the capacity fade of lithium-ion cells under various charging 
and discharging regimes, temperatures and SOC windows.
The dataset from Sandia National Labs (SNL) consists of 32 commercial 18650 NMC cells cycled to 80% 
capacity. The experiments examine the influence of temperature, depth of discharge (DOD), and discharge 
current on the long-term degradation of the commercial cells. The cells were fixed at a range of temperatures 
from 15-35oC, charged at C-rates from 0.5-3C, and cycled between DOD limits of 0, 20, 40, 60, 80 & 100%, 
meaning a wide range of usage conditions were covered. Each round of cycling consisted of a capacity 
check, some number of cycles at the designated conditions for that cell, and another capacity check at the 
end. The capacity check consisted of three charge/discharge cycles from 0-100% SOC at 0.5C 
The NMC dataset is one of the most comprehensive available with accelerated aging measurements from 
32 cells in total, covering wide ranges of cycling, calendar, and temperature conditions and including high 
resolution time series data on the current, voltage, and temperature witnessed by the batteries during the 
experiments taken over ~18months. 
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Table 2: A summary of publicly available data set used.

Dataset Sandia National Labs
Battery Vendor LG Chem
Cathode NMC
Form factor 18650 Cylindrical 
Nominal capacity 3 Ah
Number of cells 32
Charge rate 0.5 – 3C
Discharge rate 0.5 C
SOC limits 0, 20, 40, 60, 80, 100%

Given this experiment was not part of the original POV scope, and Sensai have spent more time working 
with LFP data from Sandia National Labs, the data pre-processing was mostly conducted using the same 
script used in Section 1.1. This meant some of the data/cells were not easily usable and a decision was made 
to only work with 24 of the 32 cells available given the noise and gaps in data in the 8 other cells (this was 
explained in POV meeting no. 15 on December 8th 2022, and anyone who would like to see the noise and 
missing data should read the meeting slides from that day, that have been uploaded to Sharepoint). 
This left 24 cells for this experiment, 20 which were cycled from 0-100% SOC limits, and 4 cycled from 
40-60% SOC limits, with all other C-rates and temperatures outlined in Table 2 present in the data set.  As 
in Section 1.1, the data from each cell was pre-processed into a common format to simplify the model 
training process. Overall this data set results in 10x more data being available for model training & 
testing compared to the Volvo Group data set.

Results
A model training process was completed as in Section 1.2, with Figures 5 (a) & (b) showing the results; the 
Predicted versus Actual ΔSOH, for a model trained on the training data and applied to the test set (the 
validation data is excluded for brevity). Referring just to the test set, the model showed good accuracy and 
a strong ability to learn from this data with RMSE and R2, values of 0.0059 (absolute), and 0.907. Despite 
the larger amount of data available, interestingly these values are slightly worse than achieved with the 
Volvo Group data set, but this is not completely surprising given the greater noise, number of outliers and 
missing values in the Sandia National Labs data set. What this indicates to Sensai is the quality of data is 
vital for this approach (and all machine learning approaches) and getting good data (e.g. from Volvo 
Group’s well controlled lab-based accelerated aging experiments) is more important than getting lots of 
data. Separately, histograms of the absolute difference between the predicted and actual ΔSOH values for 
the training and test data are shown in Figures 5 (c) & (d) to provide an overview of their distribution.
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(a) (b)

(c) (d)
Figure 5: Scatter plots of the Predicted versus Actual ΔSOH (%) for a model trained on (a) the training data and, 
(b) applied the test data, and corresponding absolute error histograms for (c) the training and, (d) test data.

Twenty-four ‘leave-one-out’ experiments similar to those conducted in Section 1.2 were carried out on this 
data as well with the results plotted in Figures 6 (a) & (b). The individual plots show that, similar to Section 
1.2, in general, models trained on data from 23 cells, and then tested on the excluded one, model very 
accurately the decrease in SOH of the test cell. There are definitely cells where it is less accurate, but this 
seems generally due to some of the cells having slightly unusual SOH trajectories, which likely results from 
the rapid turnaround of the data pre-processing which didn’t allow enough time to manually go through 
each cell and improve the pre-processing for each. The 40-60% SOC limit cells are plotted separately in 
Figure 6 (b) and mostly show good agreement, with some errors compounding as is typical based on our 
initialization conditions.
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(a)

(b)
Figure 6: Plots of the actual (green) versus forecasted (blue) SOH trajectory for the 24 cells used as test cells in 

the ‘leave-one-out’ experiments with the 0-100% cells in (a) and 40-60% in (b).

This concluded the data-based SOH estimation and forecasting section of the POV with some questions 
answered and other interesting ones found. A summary of the learnings from Phase 1 of the project are 
listed below and are likely to form the basis of any follow-on project, as described in Section 4, Next Steps.

Learnings from Phase 1; to build upon in future engagements.
1. The method works on this initial data set from Volvo Trucks. Although it might require some 

adaptation to the type of data collected in-vehicles (i.e. the histograms will require a different 
format).

2. The amount of dynamic data (Cell 203 only) was not enough to categorically say this method will 
work as well with that type of data, although Sensai has experience applying these methods to other 
data sets and remain confident this dynamic data won’t be an issue. This would be an important 
point to address in any future project. 

3. Feedback from the team at Volvo Truck’s has made it clear that in practice, for many reasons, 
confidence intervals for predictions/estimations are important. These would be developed during 
any further project based on an adaptation of the input training data to include uncertainty 
estimations.

4. In addition, while a general model as produced here in useful, the best application of this technology 
would be to adapt it to individual battery modules within packs, with an online learning 
implementation where data from the field is used to update individual models over time. 
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Phase 2: Data-based residual value (RV) forecasting 
In the second phase of this POV, a capacity fade model was be used to calculate the residual value of Volvo 
Truck’s batteries reused as grid-tied energy storage systems in the California (CAISO), New York (NYISO) 
and Pennsylvania-New Jersey-Maryland (PJM) electricity markets comparing two applications; (i) price 
arbitrage (CAISO & NYISO) and, (ii) frequency response (PJM). The maximum residual value will be 
found by optimizing the daily control policy to balance short- and long-term revenue potential using 
degradation aware optimization that dynamically values battery degradation1, with an overview and 
example results shown in Figures 7 (a) & (b).
Battery degradation: the data-based models created in Phase 1 were not used here, given differences 
between the inputs required to model degradation with them, and what was required to run the valuation 
models. More specifically; voltage is an input to the models developed in Phase 1, but not available from 
the simulation methods used here, where SOC is used. This would be addressed in future projects and the 
models directly used together. 
Instead, battery degradation was modelled as a linear process (cycle life modelling) considering a cycle life 
of 4500 equivalent full cycles to 80% SOH for a Volvo Group NMC battery under 25oC, 1C/1C 
charge/discharge rates. In some of the modelling, it was decided to also run a higher cycle life of 7200 
equivalent full cycles to 80% SOH to represent an LFP battery. 

Price Arbitrage
In the CAISO and NYISO markets, batteries can be used as stand-alone stationary energy storage systems 
that charge by purchasing electricity when prices are low (i.e. during periods of high solar irradiance) and 
sell when prices are high, i.e. in the evening. These systems generally work by buying and selling power in 
the day-ahead electricity market, and are a vital resource in providing stability and buffer to the grid in 
areas with high renewables penetration, with projects actively encouraged by the grid operator. The first 
reuse application will consider Volvo Trucks batteries in the arbitrage market in California and New York.
Modelling overview: 10-years of historical electricity market prices from an individual node in each market 
were downloaded and used (e.g. Figure 7 (c)) - with batch simulations run for different initial state-of-
health conditions (in this case considered as different initial capacities), i.e., batteries were modelled with 
initial capacities from 100% (a new battery) to 65% (taken as the likely range of values when removed from 
the vehicle), and project lifetimes from 1-10 years were be considered.
The batteries modelled were assumed to have 1-hour energy storage (much lower than the typical 4-hour
system) but used here given the knowledge of battery aging under 1C charge/discharge conditions, rather 
than typical 0.25C.

                                               
1 B. Xu, "Dynamic Valuation of Battery Lifetime," in IEEE Transactions on Power Systems, (2022)
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(a) (b)

(c)
Figure 7: (a) The Battery Valuation Framework, (b) example output from the modeling process, and (c) example 
data used during residual value modeling.

Results
The results from the residual value modelling in CAISO are presented in Figures 8 (a) & (b). They show a 
new battery (100% SOH) has a value of between $6,600 and $7,200 /MWh/year depending on the assumed 
end-of-life (EoL) which decreases pretty rapidly for batteries with lower initial SOHs. In fact, in this 
modelled scenario, a battery with an initial SOH of 80% has a value of only $2,000 /MWh/year. These 
values appear quite low and show the high dependence of the final value on the electricity price data, 
arbitrage opportunities, and location. In fact, having seen these results, Sensai did a literature review to see 
whether studies had been undertaken on battery value versus location and found a recent study2 which 
showed the value of a new battery in CAISO can vary from as low as $18,000 per year to a high of $48,000
per year for a 4-hour system. The study looked at a 4-hour system which would not result in a 4x revenue 
increase versus our 1-hour system but more likely a 2-3x increase owing to charging/discharging power 
limits. Therefore, this analysis and literature review show the data used here results in battery residual 
values at the lower end of the scale, and highlights the importance of careful consideration of the input data 
used, or sensitivity analysis that would need to be undertaken when using these methods.

                                               
2 R. H. Byrne, et al., "Opportunities for Energy Storage in CAISO: Day-Ahead and Real-Time Market Arbitrage," 2018 
International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2018, pp. 63-68.
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In light of these lower valuations, Sensai also studied battery value in the NYISO market for which they 
also had 10-year historical data for a particular location. In this case, values over double that of the CAISO 
analysis were determined as outlined in Figure 8 (c) & (d). In this case, an 80% SOH battery would have a 
residual value of ~$6,000 per MWh, and retain ~50% of their initial value. 
What these analyses show is that rather than being a tool for finding an exact residual value, in these early
stages of the battery reuse market, the best application of this analytics is likely to be as a tool that analyses 
and compares regions/markets to find ones that provide the greater potential for second-life batteries versus 
other regions/markets. Therefore, resources and effort can be focused in these higher value regions. For 
example, the areas within California where all of Volvo’s second-life batteries would be best transported 
to for their reuse (and partners found in those regions to build/manage projects).

(a) (b)

(c) (d)
Figure 8: (a) The forecasted residual value of a 1 MWh Volvo Truck battery when reused in a Price Arbitrage 
application in the CAISO electricity market, (b) the value of a used NMC battery versus a new one, and in (c) and 
(d) the same scenarios are presented except modelled using NYISO market data.

Frequency Response
Batteries are now regularly used in electricity market to provide reliability services, i.e. batteries can be 
used as stand-alone stationary energy storage systems that receive power from the electricity grid, or 
provide power to it, when requested by the system operator, to provide stability in times when there is an 
excess of supply or demand. The signals from the operator might be received quite regularly or irregularly 
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depending on where in the grid the battery is located. In general, around the world, these frequency response 
markets have grown quite rapidly in recent years, with generous prices given to participants. Therefore,
they are known as a very valuable use of batteries and potentially second-life batteries which we will 
investigate here.
Modelling overview: For this mode, 5-years of historical electricity market prices from an individual node 
in the PJM market were downloaded and used - with batch simulations run for different initial state-of-
health conditions (in this case considered as different initial capacities), i.e., batteries were modelled with 
initial capacities from 100% (a new battery) to 65% (taken as the likely range of values when removed from 
the vehicle).
The batteries modelled were assumed to provide 1 MW with 1 hour energy storage available, although
hardly used as most frequency responses are required for < 20-mins. 

Results
The results from the residual value modelling are presented in Figures 9 (a) & (b). They show a new battery
(100% SOH) has a value of ~$80,000 /MW/year depending on the assumed end-of-life (EoL) which 
maintains until SOH = ~90%, before dropping quite quickly. In this modelled scenario, a battery with an 
initial SOH of 80% retains a value of ~$60-70,000 /MW/year – much higher than the arbitrage use case.
In Figures 9 (b) & (c) we see that in these scenarios, despite a shorter cycle life, NMC batteries (new and 
second-life) retain almost the same value as LFP batteries. It is noted that this is likely due to the oversizing 
of the batteries for the 5-year modelling assumption, i.e., a smaller LFP battery (less than 1 hour) would 
likely also last 5 years and therefore generate as much revenue as the modelled 1MW/1MWh system. This 
was investigated by reducing the battery energy to 800, 600, and 400 kWh (maintaining a power of 1MW) 
and modelling the resulting revenue as shown in Figure 9 (d). It is clear to see that a new 600 kWh system 
maintains the same value as a new 1 MWh system, and it is only the 400 kWh system that is not expected 
to last the full 5 years if cycled every day.
In general, it can be seen that frequency response is a potentially attractive market for second-life batteries, 
but these markets cannot be considered to be growing, given the demand for frequency response is much 
smaller in an electricity grid versus the potential to implement arbitrage. In fact, in the US, the use of energy 
storage for arbitrage is now growing a lot faster than use in frequency response markets, and there remains 
doubt about how much capacity for frequency response applications there will be in a few years just as 
second-life batteries become available at scale.
This concluded the data-based residual value forecasting section of the POV with some questions answered 
and other ones found. A summary of the learnings from Phase 2 of the project are listed below and are 
likely to form the basis of any follow-on project, as described in Section 4, Next Steps.
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(a) (b)

(c) (d)
Figure 9: (a) The forecasted residual value of a 1 MWh Volvo Truck battery when reused in a Frequency Response 
application in the PJM electricity market, (b) the value of a used NMC battery versus a new LFP one, (c) a direct 
comparison between the NMC and LFP residual values, and (d) the impact of energy on the residual value of an 
LFP battery (1MW power).

Learnings from Phase 2; to build upon in future engagements.
• Modelled residual value is highly dependent on location and reuse-case: it is probably best to focus 

on expected early use cases in markets where Volvo’s electric trucks are already on the road. The 
best use of these analytics is probably to compare regions, rather than derive an exact residual 
value, e.g. are there regions in the EU where a battery is 2x more valuable than others? 

• The methods are useful for comparing technologies, e.g. the value of a new LFP battery system 
versus second-life NMC battery system.

• The residual value numbers are highly dependent on the electricity prices used, which are historical. 
Many battery purchasers will have their own assumptions on the future volatility and growth in 
electricity prices for their locations and use cases, and may want to adjust the electricity prices used 
in the modelling to fit their assumptions.

• Given the relatively easier cycling conditions in most reuse cases, where batteries are not cycled 
with the same dynamics as in a truck, the data-based degradation model is not as critical to early 
development as thought. While the most accurate residual values would be derived using data-
based model like the one created in Phase 1, the improvements are likely to be minimal and not 
critical for decision-making on battery reuse, at least not until the market has scaled significantly, 
and the data-based modelling is working very well on a per vehicle or battery pack basis. 
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3. Potential Value

In the final phase of the POV, a number of different scenarios and battery lives are compared using financial 
models to quantify the benefit of Sensai Analytics’ technology to Volvo Trucks.

A) Nearer-term value: Extending battery 1st-life through Li-ion battery aging digital services

A comparison is made between the lifetime value of batteries (present value of future revenues) where 
knowledge of the current SOH and an ability to forecast how it degrades versus different driving and 
charging behaviours is used to implement strategies to extend first-life, i.e. proactively extending 1st-life 
by managing charging behaviour, or providing dynamic pricing to encourage better behaviour. In a simple 
analysis, we model the scenario where the expected lifetime of a leased Class 8 Heavy Duty Truck is 
extended from 6 years to 8 years. In Table 3 below, we summarize the financial benefit of this to the lessor 
(e.g. Volvo Group). By assuming a simple monthly lease price of $4,000, the Lifetime Productivity of 
Vehicle 1 is $270,479 (including the estimated residual value for an 80% SOH battery pack sold into a 
CAISO arbitrage reuse case). Now assuming the lease is extended by 2 years, through the implementation 
of a strategy enabled by the analytics described in this project, the Lifetime Productivity of the Vehicle 
becomes $332,115, an increase of $61,636 or 23%. This translates to increased revenue of $7.76mn for 126 
VNR all-electric trucks in California.

Table 3: Lifetime Productivity of two Vehicles considering extended lease financial modeling.

B) Medium-term value: Increasing residual value

In the second case, a medium-term application of these analytics is considered, where the knowledge of 
residual value enables the optimum time for a battery replacement to be found, to maximize the Lifetime 
Productivity of a vehicle. In this case, we use the results from the frequency response modelling to calculate 
the residual value of the vehicle battery at the end of a vehicle lease term which we consider might run from 
1 – 6 years (Table 4). The residual values are the present value of a 565 kWh battery used in a frequency 
response market for 5 years. The lease revenue we model is less than in A) above, at $2,780 per month, 
while the discount rate we consider is 8%. These values were chosen as they are required to demonstrate
the optimum point of removal, and other values would often lead to analytics results that showed the best 
plan is to leave the battery in the vehicle for all 6 years. Nevertheless, the point of this exercise is to show 
that as certainty grows around battery residual values and leasing terms for Heavy Duty Electric Trucks,
modelling the full financial lifecycle of the battery will be important to ensure optimum decisions are being 
made on battery life.



17

In Figure 10 (a), the battery residual value versus initial SOH is shown and starts at $260,000 for a new 
battery, decreasing to $170,000 for one with an initial SOH of 80%. Figure 10 (b) is a summary plot of the 
Lifetime Productivity (or Battery Lifecycle Value), using the values in the last column of Table 4. We can 
see that a vehicle which is leased for 1 year and then the battery sold, for $224,295 when SOH = 96.7%,
will have a Lifetime Productivity Value of $257,628. The maximum Lifetime Productivity Value found,
$281,681, is for a lease term of four years, and is 9% higher than the lowest value. Leaving the battery in 
the vehicle for longer than 4 years results in lower lifetime productivity values as the battery residual value 
starts to drop much more quickly as its SOH drops below 90% (Figure 10 (a)). 
While these results are highly dependent on the assumptions made (but required given the early stages we 
are at in the electric truck and battery reuse markets), they show the importance of this kind of analytical 
approach in maximizing the value of vehicles and batteries across their lifecycles.

(a) (b)
Figure 10: (a) Battery residual value versus initial SOH, and (b) the Lifetime Productivity of a vehicle/battery 
combination versus lease term.

Table 4: Lifetime Productivity of a Vehicle considering different leasing periods and battery residua values.
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4. Summary & Next Steps
In summary, Sensai Analytics and Volvo Group successfully demonstrated the use of data-based 
forecasting of (i) battery capacity fade, and (ii) battery residual value in arbitrage and frequency response 
markets. The models achieved reasonable accuracy with learnings from both phases of the project
indicating areas where either the modelling processes should be further tested, or adapted to better fit the 
needs of Volvo Group. These learnings have been discussed in length during the weekly project meetings 
and potential tasks for a second POV project are briefly described here, based on these discussions.

1. Data-based remaining useful life forecasting – online learning

Based on the learnings from this POV, the outline of a potential structure/pipeline for an online learning 
process for data-based remaining useful life forecasting of individual battery modules is presented in Figure 
11. In Brief, four stages are shown which include (i) training a model offline using lab-measured data of 
battery capacity fade, which would be called the ‘global model’, (ii) use this global model to estimate and 
forecast the SOH degradation for in-vehicle modules, with the actual SOH returned by the vehicles 
compared to the forecast. In (iii), after the in-vehicle modules have degraded to ~95 SOH, a fine-tuning or 
re-training process is undertaken where data from the in-vehicle modules is used to fine-tune a copy of the
‘global model’ to create a ‘local model’, i.e. a model per module is created and re-trained with a smart 
weighting of the original lab-data and in-vehicle data from that module. In (iv), these new local models are 
put into production and used to forecast the RUL of individual modules in vehicles.
Of course, this is a simplified overview of how online machine learning could be used to create data-based 
models to solve the problems of Volvo Group, a consideration of many parts are excluded for now (e.g. 
combining all the in-vehicle data to fine-tune the original global model so it also adapts to the field data). 
Some of the most important components of this approach have been discussed at length in meetings and 
are described below. The testing of these would form the basis of a scope of work for a follow-on project.

Figure 11: A simplified overview of an online machine learning pipeline for data-based RUL forecasting that 
combines lab and field data.

Important components to be tested in future engagements:

1. Dynamic data: further testing of these methods with dynamic data, similar to what will be recorded 
in vehicles, is required.

2. Confidence intervals: as described earlier, providing confidence intervals for predictions/forecasts 
are important and required.
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3. Initialization: to date, all modelling has been done from initial SOH values of 100%, but in practice 
some electric trucks are already in the field, and in order to apply these methods to these vehicles 
it will need to be shown that modeling from an initial SOH < 100% also works.

4. Fine-tuning (creating local models): requires the testing of different model architectures available 
to Sensai, to find which is best suited to fine-tuning for this application, and what data-weighting 
process to use. 

5. Finally, the feature engineering (i.e. histogram structure) would need to be adapted to match the 
data being collected in vehicles. Sensai have already run extensive experiments on the type and 
structure of histograms required for their methods to work, and have seen a wide range of 
possibilities, and don’t see there being an issue matching one to Volvo Group’s actual BMS data.

2. Data-based residual value forecasting 

For any future engagement, Sensai would propose tackling the main learnings from the residual value phase 
of this project:

1. Adapt the approach to the best use of these analytics, i.e. comparing different regions/markets, to 
help focus sales efforts.

2. Continue with the approach that enables value comparison with new batteries.
3. Many battery purchasers will have their own assumptions on the future volatility and growth in 

electricity prices for their locations and use cases, enable easy adjustment of the electricity prices 
used in the modelling to fit their assumptions (this is more a UI problem for future sales tools but 
is noted here).


