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1. Summary  

The project objective is to investigate the possibility to apply federated learning for 
anomaly detection using multivariate sensor data from the vehicles. This includes to 
propose a protocol for federated learning that deals with the intermittency of the vehicle 
and take the modularity of vehicles into consideration. To achieve this, we build an edge 
analytics prototype using the Crosser platform for orchestration and integrate a framework 
with federated learning support. We develop also new types of survival models for 
continuous distributions.  
In this project we developed a way to stream flexibly CAN time-series, orchestrate and 
deploy federated machine learning models for anomaly detection that use CAN time-series 
data for training and for inference. The IoT edge analytics prototype can be installed in and 
used by test trucks. One of the developed federated anomaly detection models, namely the 
Hierarchical Gaussian Mixture model, can take advantage from a modular system. 
Temporal Convolutional Neural networks were implemented in a federated learning 
fashion to leverage the advantages and disadvantages between lightweight statistical 
learning and neural network-based anomaly detection models. We performed 
investigations on convergence for asynchronous federated learning, that show that the ratio 
of the buffer k and client number c is crucial to control for ensuring global model 
convergence. Moreover, modularity on survival models for vehicle components was 
investigated, showing that specialised models are not always of advantage in comparison 
to more general models, due mostly to the amount of data to train the models. On the other 
hand, we have introduced new type survival models which outperform existing models, at 
the cost of higher computational demand.  We have made publicly available the 
implementation this new type of survival models. 
Finally, we performed use-cases to test the advantages of an edge device and the ability to 
streaming in a flexible way high frequency data for fault prediction models. 
 

2. Sammanfattning på svenska 

Projektets mål är att undersöka möjligheterna att använda federerad maskininlärning för 
avvikelsedetektering med hjälp av sensordata från fordon. Det inkluderar att föreslå ett 
protokoll för federerad inlärning som hanterar asynkron och oregelbunden trådlös tillgång 
till internet och som tar hänsyn till fordonens modulära uppbyggnad. För att uppnå det har 
vi byggt en prototyp baserad på programvara från Crosser som integrerats med ett ramverk 
för federerad inlärning. Prototypen körs på kantnod (dvs i fordonet) och orkestreras på 
distans med webbgränssnitt. Prototypen kan installeras i  testbilar och modellerna tränas 
med fordonets CAN-data. Avvikelsedetektering sker också med CAN-data. Prototypen kan 
också på ett flexibelt och konfigurerbart sätt strömma tidsseriedata från fordonets CAN-
buss till databas i AWS. 
  



 

 

Vi har jämfört flera algoritmer för federerad avvikelsedetektering och även utvecklat helt 
nya, tex Hierarchial Gaussian Mixture, som drar fördel av fordon byggda på ett modulärt 
sätt. Temporal Convolutional Neural Network är ett exempel på en existerande algoritm 
som använts i jämförelser. Hänsyn har tagits till de begränsade beräknings- och 
minnesresurser som är tillgängliga i fordonet. 
  
Vi har utfört undersökningar angående konvergens för asynkront federerat lärande, som 
visar att förhållandet mellan bufferten k och klientnummer c är avgörande för att säkerställa 
global konvergens.  
  
Vidare har modularitetaspekten för överlevnadsmodeller undersökts, vilket visade att 
specialiserade modeller inte alltid är fördelaktiga i jämförelse med mer generella modeller, 
främst beroende på mängden data för att träna modellerna. Vi har introducerat nya typer 
av överlevnadsmodeller som överträffar befintliga modeller, till priset av högre 
beräkningsefterfrågan. Vi har gjort implementeringen av denna nya typ av 
överlevnadsmodell publikt tillgänglig. 
  
Slutligen har olika användningsfall testats för att finna fördelar och nackdelar för 
maskininlärningsmodeller på kantnod och möjligheterna på ett flexibelt sätt strömma 
högfrekvent data. 

 

3. Background 

The overreaching goal of the FAMOUS project is to continue with the efforts of the 
previous Vinnova funded project LOBSTR  (Scania CV AB, 2020) to improve Scania’s 
capability to detect and handle vehicle faults and CODA  (Scania CV AB, 2021) , which 
had the focus on predictive models based on off-board data and valuable insights on how 
to include off-board fleet data into the predictive models has been gained from this project. 
This project builds upon the results of the two aforementioned projects. From these, the 
need for a scalable vehicle edge analytics device and a framework for enabling scheduled 
federated learning, model deployment and on-demand CAN signal streaming was 
identified. Additionally, the need of combining the predictive models based on the off-
board data and on-board anomaly detection models is addressed by focusing on the 
challenges that a connected vehicle fleet entails, such as component modularity and 
intermittent connectivity.  
 

4. Purpose, research questions and method 

The goals of the FAMOUS project are; the development of a federated protocol and models 
for fault detection with intermittent connected vehicles that guarantees convergence of the 
models; integrate the federated models to the underlying modular system of Scania’s 
vehicles by developing a hierarchical clustering of vehicles based on its modular system; 



 

 

and develop a scalable and flexible vehicle edge analytics solution for efficient 
development, testing and deployment of models as well as for streaming selected time-
series sensor data signals. Figure 1 shows schematically the principle of combining 
federated models from a diverse fleet build upon a modular system. Key concepts in the 
project are federated learning and vehicle modularisation to handle the large number of 
variants and vehicle configurations in a learning system for fault handling and optimized 
maintenance. Federated and modular solutions make it possible to learn models for fault 
management and maintenance from the whole fleet, even though individual vehicles have 
unique configurations, and without sharing possibly sensitive information. 

 
 

 
 

 
Figure 1 Schematic picture of the FAMOUS project: On the left side, different trucks represent a diverse fleet that is 
connected to the cloud. Within the cloud, access to the vehicle off-board data as well as information about the specific 
vehicle configurations are represented by the puzzle and database icons. By combining on-board data from the 
heterogenous fleet that is streamed through the connected systems and the off-board data of the vehicles we can find 
cohorts of sub-fleets that can have a common model for anomaly detection. 

From the previous aforementioned projects LOBSTR (Scania CV AB, 2020) and CODA 
(Scania CV AB, 2021) we have gathered a set of time series data for vehicles driving in 
normal conditions and with injected faults and for the off-board data, we have used 
anonymized aggregated data. To understand how to develop models for these two kinds of 
data, high-resolution and low-resolution, was a key question for the project in order to take 
a step forward in understanding how to combine them two to get the most for developing 
models aimed for fault detection and predictive maintenance. To tackle these questions, 
especially for getting access to on-board data and deploying models on-board, new vehicle 
IoT infrastructure is needed. This project developed and proposed a new architecture to 
deal with high resolution flexible data streaming, machine learning model training on the 



 

 

edge, machine learning model inference on the edge and federated learning. This 
infrastructure was based on the Crosser Technologies platform and leveraged different 
approaches to federated learning. 
The on-board ML models that the project focused on are the Gaussian Mixture Model 
(GMM) and the Temporal Convolutional Network. The GMM was developed in a fashion 
that modularity can be implemented in the federated learning training. The federated 
learning framework chosen to be integrated to the edge analytics Crosser Platform was the 
open source framework FEDn from Scaleout. The predictive maintenance models using 
off-board are network-based survival models for continuous distributions. Finally, three 
use-cases were done that make use of the edge analytics prototype developed in this project. 
 

5. Objective 

The main objectives of this project, as stated in the research application are: 
 build a scalable vehicle edge device prototype for orchestration of federated learning, 

model deployment and model testing 
 develop one or more federated anomaly detection methods optimized for edge computing 

and evaluated on injected faults and on a small test fleet with an anomaly classification 
method for mapping anomaly classes to known faults or to undiscovered faults 

 module-based vehicle clustering methodology for federated learning models 

The project was very successful, however, some minor adjustment on the main objectives 
had to be done. We successfully developed a scalable vehicle edge device prototype for 
orchestration of federated learning, model deployment and model testing. We used the 
Crosser platform as the backbone and adapted the open source FEDn framework. 
Moreover, we developed two types of lightweight anomaly detection models in a federated 
and modular fashion and one federated learning anomaly detection model based on neural 
networks. When researching on the modular-based vehicle using predictive models, with 
the motivation to the bridge between on-board data and off-board data and leverage the 
modular data stored in the cloud to include this information into the on-board federated and 
modular models for anomaly detection, we were confronted with some barriers. 
Unfortunately, the module-based vehicle clustering methodology for predictive showed to 
be more difficult than expected, probably due to the quality and quantity of the available 
data. With the studied datasets our results did not show any significant improvement on the 
predictions when taking into consideration the modularity compared to generic. Therefore, 
the focused moved from modular cohorts to the development neural network-based 
survival models for continuous distributions. This new focus was very successful and 
proposed a new family of models, namely, piecewise survival models and energy-based 
survival models. 
 



 

 

6. Results and deliverables 

Edge ML Prototype 

For the project we developed an edge ML prototype device by combining the Welotec Edge 
Gateway, the Crosser Platform and FEDn framework. This prototype was tested in a truck 
and ML models for anomaly detection were developed tailored to this prototype. 

Edge analytics framework 

The initial aim of the project was to integrate the Crosser IoT node to the new telematics 
unit model from Scania. Unfortunately, the development of the new telematics unit was 
delayed. Therefore, it was decided to use an industrial IoT device that will act as the 
telematic unit: we used three Welotec Edge Gateways devices with 2 CAN interfaces, 
4LTE cellular interface running GNU/Linux (Debian). Figure 2 shows a picture of one of 
the actual Welotec Gateways. The Crosser Node was configured to access the CAN 
interfaces of the device and had connectivity enabled to AWS via MQTT. Additionally, we 
used the Crosser Cloud to orchestrate and monitor the deployment of the Crosser Flows. 
This Edge Gateway with the Crosser Node installed could be added to a test truck and can 
connect to two different CAN buses. 

 
Figure 2 Picture of one Welotec Gateway with one Serial CAN connector. 

 

Crosser  

The Crosser Platform consists of two components, the Crosser Node and the Crosser 
Cloud. The Crosser Node is the real-time engine of the platform. It is usually deployed as 
a Docker Container. It supports edge computing, MLOps, integration with a large variety 
of data sources, low-code development, and version control. The Crosser Cloud is the hub 
where design and orchestration occur. It allows users to create, manage and monitor data 
flows, automation, and integrations. The Crosser Cloud can be deployed within an internal 
firewall. For this project, the Crosser Cloud was hosted on Crosser’s infrastructure.  



 

 

The way to process data within the Crosser Platform is via a Data Flow, which is a sequence 
of interconnected modules designed within the Crosser Flow Studio to process and 
manipulate data in real-time. These modules are built based upon specific requirements. 
During the project, Crosser developed new modules and extended existing ones tailored to 
the project's needs. The crosser data flows enable users to create sophisticated data 
processing pipelines in a modular way. If the existing modules do not fit the needs, custom 
python code can be used to develop user defined modules. 

FEDn Framework 

Scaleout Systems develop the open source framework FEDn for Federated Machine 
Learning. It is a framework that can be integrated into existing systems. Its focus is to 
enable federated learning. 
During the project we adapted the open source FEDn client for our needs and deployed it 
using the Crosser Platform. The combination of the Crosser Platform with the FEDn 
framework has proven to be an easy way to create data flows in the Edge Gateway and 
federated learning of different machine learning models. 

Federated Anomaly Detection Methods 

Federated GMM 

In this project we propose two novel solutions for federated GMM. The algorithm of 
federated single GMM (FSGMM), which is based on incremental learning and includes a 
novel approach for aggregating the local models into a single global GMM at the server 
level. And federated hierarchical GMM (FHGMM), which utilizes clustering of local 
models to form multiple global GMMs. During inference, the clients choose the global 
GMM that is deemed to be most suitable, given the current data distribution of each client. 
 
Federated GMM Discussion 

Overall, the results indicate that both the FSGMM and the FHGMM produce similar results 
as the non-federated model. More experiments with larger sets of non-IID empirical vehicle 
data would need to be conducted to determine whether FHGMM has a performance 
advantage in real scenarios. FSGMM has similar performance as the non-federated model 
in all tested scenarios. 
The federated models use incremental learning, which means that new data is presented on 
every local round. The models still seem to be able to learn the patterns in the input even 
when each input window is quite small (e.g., 100 datapoints).  
Hyperparameter optimization was not carried out in any systematic way for the federated 
solutions. However, the somewhat arbitrary choices of hyperparameters still resulted in 
acceptable performance. 
 



Federated TCN

Several simulation experiments were conducted, with different model architectures and 
hyperparameters. Similar architectures were tested for both vehicle data and SMD dataset 
(NetManAIOps, OmniAnomaly, 2023) (besides input and output matching the number of 
features in respectively datasets), both prediction and autoencoder approaches were tested. 
For the prediction method, we predicted the next time step for all features. The autoencoder 
maintained the dimensions in the output. Sequence length is the length of the moving 
window that we used across the data to create data samples (as we do not want to feed the 
model the whole log file as just one data sample). Figure 3 illustrates how the process steps 
are for our federated setup. 

Figure 3: Steps for federated NN learning in our setup.

Federated TCN Discussion

We have tried anomaly detection on Scania’s on-board vehicle dataset and public SMD 
dataset, using two different methods (prediction and autoencoder). We used temporal 
convolutional network (TCN) as the main building block for designing different prediction 
and autoencoder models. Autoencoder performed better on the on-board vehicle dataset 
while prediction performed better on the SMD dataset. We selected the 2-3 best performing 
models and did federated learning with them. As expected, they perform slightly worse 
(than the single vehicle case) depending on how frequent the global communications are 
but that is to be expected. 

Comparison between Federated GMM and Federated TCN

In general, it is a difficult task to develop models for time series anomaly detection with 
high precision and recall. The fact that we want to avoid sending the time series data out 
of the vehicles adds extra complication to the task. However, we have explored and 
developed two alternative approaches for this, a Gaussian Mixture Model and Temporal 
Convolutional Networks. We did comparison on their performance to handle highly 
variable time series, where sequences of data points must be considered. Further, we have 
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developed a protocol for federated learning of GMMs. For the TCN models, Fed-Avg 
methods were used, i.e., model aggregation was done by averaging of the weights in the 
neural network. 
 
A summary of the findings can be found in Table 1. However, since the nature of the two 
solutions Federated GMMs and Federated TCN-AE is so different, it is hard to make a 
“fair” comparison, for instance, for pre-processing with Federated GMM solutions the 
smoothing technique is crucial important while scaling operation is more important for 
Federated TCN solution. The comparison is conducted based on the experiments on the 
Scania empirical data. 
 

 
 

Table 1: Comparison between three federated solutions (FSGMM, FHGMM, Federated TCN).  
Asynchronous Federated Learning 

Federated learning is a machine learning technique in which models are trained on the edge 
nodes and the trained models are later federated on the server at regular intervals. This 
federated model is then sent back to clients. In this way the knowledge gained on individual 
clients is shared across the rest of clients.  
In a fully synchronous federated learning, all clients send their model updates and server 
waits until all the clients have submitted their updates. In this setting, the server must wait 
for the slowest client to submit its update, and thus for each global iteration slowest client 
(straggler) is a bottle neck. This slows down the training process as a result and clients 
cannot get updated model until all the clients have sent in their updates. In practical settings, 
this is usually a limitation since all the clients or vehicles in Scania’s context are not 
available at a given time. At a given time there will always be a part of population available 



for synchronization. Therefore, we need an asynchronous way of federation, where we 
could aggregate updates from available vehicles at a given time.
An alternate way of federated learning is asynchronous federated learning, where the 
updates are processed when needed. Several approaches have been published to achieve 
asynchronous federation of clients’ models. In this project, we implement an algorithm 
inspired from (Nguyen, 2021). In this algorithm the server waits for k clients before it 
federates the clients’ updates. Weights of the federated model are then shared with the 
clients whose updates have been federated in the last round. Clients that are not 
synchronized for a long time are likely to have deviated from the federated model. Such 
stragglers are penalized accordingly to reduce their negative impact on the federated. The 
algorithm is illustrated in Figure 4.

Asynchronous Federated Learning Discussion

In general, we see reasonably good convergence for asynchronous way of federated 
learning, if the ratio between buffer size and count of clients (k/c) is not too low. We got 
reasonably good convergence as long as the k/c ratio is at least 0.2. One important factor 
to note is that in the low k/c ratio settings, updates start queuing up and gets penalized as a 
result. A future improvement can be to adjust the penalizing scheme such that late arrivals 
due to k/c ratio do not get penalized. This will enable the algorithm to federate all the 
incoming updates that arrive on time (but are only delayed due to the buffer size). Another 
future improvement can be to replace the buffer size by a time interval and consider all the 
updates that arrive in each time interval. This way only those updates will be penalized 
which are delayed due to unavailability. The number of global iterations in every 
simulation also needs to be adjusted according to the k/c ratio, i.e., with very small k/c 

Figure 4 Illustration of the Asynchronous Algorithm



 

 

ratios, we need large number of global iterations. One way to get quick convergence is also 
to train the model locally for some time before federation.  

Survival models for modular vehicles 

The main topic of this work package has been to develop data-driven survival models for 
modular vehicles based on accumulative usage. That is, to predict the distribution of the 
remaining life of a component based on how it is used. These types of models have many 
uses, especially when it comes to predictive maintenance where accurate predictions 
regarding a components useful life are essential. 
The data used in this work package consists of battery failures from a fleet of modular 
vehicles. The data both contains vehicles where the actual time of failure have been 
recorded, but also censored failure times, and is therefore classified as survival data. Due 
to the high complexity of the data, data-driven approaches are attractive and Neural 
network-based survival models have shown to be particularly effective at describing this 
type of data; however, research on these types of models is still in an early phase and the 
number of models available in the literature are still low, in particular there is a lack of 
expressive continuous time models. One of the main topics of this work package has 
therefore been to develop neural network-based survival models for continuous 
distributions. Two contributions have been made on this topic: In [ (Holmer O. F., 2024)] 
a family of models called piecewise models survival models are presented; in these models 
a survival function is parameterized based on piecewise polynomials which has shown to 
give a good trade-off between computational demand and accuracy. In (Olov Holmer, 
2023) Energy based survival models are presented; in this model a neural network directly 
specifies the failure density leading to a high expressible model which has been shown to 
outperform existing methods, but at the cost of slightly higher computational demand. A 
python package called PySaRe – a Python package for Survival analysis and Reliability 
engineering that implements these models, as well as some other useful tools, has also been 
developed and is currently being used in the Vinnova project (Scania CV AB, 2021), both 
at Linköping University and Scania CV. Parts of the package have also already been made 
publicly available (Holmer O. , 2023), and a full release is being prepared. 
The explanatory variables in the dataset consist of accumulative usage gathered during the 
vehicle’s lifetimes at specific times, called snapshots. The snapshots are sporadically and 
unevenly spaced over time and the number of snapshots from each vehicles varies greatly. 
The fact that the dataset contains more than one snapshot from each vehicle means that 
multiple predictions can be done, one for each snapshot, and since predictions from the 
same vehicle clearly are not independent maximum likelihood training is not directly 
applicable on this type of data. Maximum likelihood training is the standard way to train 
this type of models and therefore the main topic of [ (Holmer O. K., 2024)] is to investigate 
how maximum likelihood-based training can be applied to this type of data. The results 
show that if the data is on a specific format, where the snapshot times for all vehicles are 
the same, maximum likelihood training can be applied and yield good results. For datasets 
that are not on this format, which is the case for the dataset used in this work package, it is 
proposed to resample the data. How this resampling is done is shown to be an important 



 

 

parameter; it should be chosen large enough to produce good results, but this also increases 
the size of the dataset which makes training slow. Therefore, to reduce the sensitivity on 
this parameter it is also proposed to, rather than resampling the data once before the training 
starts, resample the data at each epoch during training so that over time many different 
resampled versions of the dataset are used in the training.  
The dataset also contains information about the configuration of the vehicles in the form 
of categorical variables specifying the vehicle type. The amount of data from each vehicle 
type, i.e. the number of vehicles with a specific configuration, varies from thousands of 
vehicles for the types with the most data all the way down to vehicle types only represented 
by single vehicles. How to handle this type of information during the modelling has been 
investigated, in particular if multiple specialized models should be developed representing 
specific vehicle types, or if a general model describing all vehicle types gives better 
performance. The results indicate that building specialized models can be beneficial for 
vehicle types where there is a lot of data, however, for most of the vehicle types a general 
model tend to perform better. It was also observed that the improvements on the model that 
this type of investigations could give probably is smaller than those that the other topics 
explored in the work package could give, and therefore those topics were prioritized. 

Use Cases 

Lithium-Ion Battery Capacity Estimation Use Case 

We developed a machine learning model to predict the battery capacity and deployed the 
model in the edge analytics prototype on a bench.  
Lithium-ion (Li-ion) batteries are a critical component in battery electric vehicles (BEVs) 
as they provide the primary source of energy for propulsion. However, Li-ion battery 
capacity degradation over time is a significant challenge that affects the performance and 
driving range of BEVs. Accurate prediction and estimation of battery capacity are of utmost 
importance in the context of BEVs to ensure optimal energy management, reliable 
operation, and enhanced user experience. To run battery capacity estimation models on-
board can be beneficial as it can give direct feedback to the driver, moreover, to be able to 
train and deploy ML models on-board in a flexible and fast way will pave the way for fast 
model development and increase model accuracy. Training on-board neural networks using 
time series data that is not possible to stream due to the high frequency and large amount 
of signals opens up new possibilities for model development. 
We chose to train an LSTM (long short-term memory) neural network model for this use-
case. LSTM models can capture complex temporal dependencies within time series data. 
They maintain an internal memory cell and gating mechanisms to control information flow, 
which helps capture both short-term and long-term patterns. LSTMs can handle time series 
data with variable sequence lengths, making them adaptable to real-world scenarios where 
data might not be evenly spaced or may contain missing values.  



 

 

LSTM Model results 
The proposed LSTM model consists of an LSTM layer containing 50 units, followed by a 
Dense layer with 1 unit in the output layer—w.r.t using Adam (Adaptive Moment 
Estimation) optimizer. Table 2 presents the LSTM model’s performance in the case of 
training separate models for battery cells as well as its performance when a unified model 
is trained sequentially on battery cells #1 and #2 and then tested on battery cell #3.  
 
Table 2. LSTM model’s performance  

 Distinct models trained for battery cells and 
tested on their respective cells 

Unified model trained on battery cells #1 
and #2 and tested on cell #3 

Test Battery 
Cell. 

Cell #1 Cell #2 Cell #3 Cell #3 

MSE 0.119 0.208 0.039 0.002 
  

The LSTM model as an example model was deployed on a Welotec industrial PC and a 
summarized view of the performance of the model at the deployment is as follows: 
Training on Welotec (with batch size 72, epoch 50) 

 Handling each dataset ≈ 35 Sec. 
 Training on each dataset ≈ 16 Sec. 

Inference on Welotec 
 Loading saved model and inference < 1 Sec. 

The model was tested on the edge analytics prototype, training and inference worked as 
expected.  

Flexible data collection using operational data use-case 

To investigate the benefits of flexible data collection we extracted operational data from 
Scania trucks with a certain specification from the Scania Data Lake. This data was then 
matched with data containing failure of one specific vehicle component critical for the 
vehicle's operation, hence this meant that the vehicles with failure were labelled as the 
positive class and all other vehicles as the negative class. To test the hypothesis that flexible 
data collection could improve predictions, the vehicles were divided into three categories, 
high frequency, medium frequency and low frequency.    
 
This data sets were then put into different machine learning algorithms that could handle 
multivariate timeseries data. The best method for handling this data got the following 
results, shown in the table below, showing the average balanced accuracy over 5 training 
rounds together with the variance. We choose to evaluate the models on many performance 
metrics but balanced accuracy which we present here is most important to give a good 
overview of the total performance, as the data sets are so skewed when it comes to class 
proportions (around 25:1, i.e., the negative class is 25 times more common than the positive 
class).  
 
          



 

 

Data set Balanced accuracy 
High frequency 0.748 +/- 0.123 
Medium freq. –0.706 +/- 0.099 
Low frequency –0.581 +/- 0.055 

 
 
Given the results we can conclude that it seems that higher frequency data can lead to an 
improvement in classification performance. In this study we simulated the ability of 
flexible data collection, and the conclusion is that having the ability to adjust data collection 
frequencies for example when a vehicle is not behaving normally, could lead to the creation 
of higher quality prediction models, than is possible with current data. Part of this data set 
and initial experiment was later expanded to a study1 of how to best generate synthetic data 
to improve model performance when the data set has severe class imbalance. 

Flexible data collection using operational data and streaming data use-case 

The purpose of this work is to present a framework combining commonly used low-
frequency data in the form of aggregated read-outs, with these streaming signals. To test 
such approach, experiments were conducted on actual operational data linked to the NOx 
sensor, a critical component in the vehicle's exhaust system. 
Fault prediction based on snapshot data 
For low-frequency aggregated data, both binary classification and survival analysis were 
considered for this purpose. A framework for fault prediction over time windows of 
variable lengths was developed. The time window is selected so we can answer the question 
“Will a NOx sensor fault happen in the next few days within the time window?”. Snapshots 
within the selected time window will be labelled as the final results (repaired or non-
repaired), while snapshots outside the time window will be labelled as non-repaired 
regardless of the final results. First, the binary classification methods incl. Random Forest 
and XGBoost have been applied to the preprocessed data. The evaluation metric is the 
precision-recall AUC. The result show that the performance improves with growing sizes 
of the time window when all snapshots are considered in the training data. Then, survival 
analysis approaches incl. Random Survival Forest and GBDT-SA have been tried and the 
same evaluation metric has been used to be comparable to the binary classification 
approaches. Results from the experiments show that performances of GBDT-SA and 
XGBoost are very similar. This, together with the computational limitations, justified the 
decision of not experimenting further with SA, which was here discarded in favor of 
traditional ML classification. 
Data from a Test Vehicle 
This subsection is concluded with a presentation of the results for the whole snapshot 
history of a test vehicle for different time windows with XGBoost trained on the whole 
available snapshot data. At the same time, real-time streaming signals from the same test 
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vehicle were treated using Gaussian Hidden Markov Models (GHMM) and Long Short-
Term Memory Recurrent Neural Networks (LSTM) for task of anomaly detection. In this 
case, the relation between fault and anomaly also had to be characterised, and this was done 
on the base of observed results. Based on the snapshot results for the test vehicle, we set 
up the experiments to test GHMM and LSTM for anomaly detection.   
From our results we can conclude that while it is true that LSTM showed better results than 
GHMM and it could, for some signals, detect the fault at a time that is comparable to the 
DTCs, this cannot be said for other signals that present more "noisy" patterns. More 
generally, the obtained results face several limitations and should be regarded as an 
indication that LSTM could be a good fit for anomaly detection for fault prediction. 
Proposed combined approach 

Experiments on the test vehicle suggested that low frequency data showed signs of a failure 
up to 6 months in advance, while anomalous patterns in the signals were clearly visible 
within weeks from the breakdown event. Based on this, the combined approach featured 
running multiple time-window models on a same low frequency data read-out while an 
anomaly detection model runs in the background in an on-line fashion. Figure 5 shows the 
suggested approach. 

 
Figure 5 Illustration of the suggested approach 

At the present state, anomaly detection could be used as a high-resolution model for fault 
prediction or when the time horizon is too small for time window models. Of course, to 
make LSTM for anomaly detection usable, one would have to characterise anomalies in 



 

 

detail. For this reason, a viable alternative within the limits of this thesis could be to replace 
anomaly detection with the first activation of relevant DTCs.  
 

7. Deliveries 

Deliveries stated in the application 
 D1: Report of federation protocol handling intermittent data sources and tested with 

federated models 
 D2: Deploy a model on a vehicle via Crosser engine. 
 D3: Demonstration of updating edge algorithms at scale (minimum 1000 simulated nodes 

(vehicles)) 
 D4: Show potential of flexible data collection. 
 D5: Demonstration of re-training of ML models at the edge on the Crosser platform and 

exchanging updated models with a central cloud service 
 D6: Published paper or report on methods for modular federated learning, applied to fleet 

data from Scania. 
 D7: Show effect of intermittent connection on federated neural network model. 
 D8: Pipeline of anomaly classification method and classification mapping to existing 

faults 
Most of the deliveries were satisfactory fulfilled, D3 was done with less simulated nodes 
due to the complexity and time needed to set up such a large infrastructure. Instead, we 
simulated up to 20 nodes with the developed architecture. Nevertheless, Crosser 
Technologies showed their results for thousands of nodes but not with the algorithms 
developed in this project. We assume that the combination of both results, indirectly show 
the wanted scalability.  D8 was unfortunately not feasible due to the difficulty to couple 
different data sources in an automated way to create a pipeline. We take the learnings on 
how to approach this problem for future projects. 
 

8. Dissemination and publications 

Dissemination 

How are the project results 
planned to be used and 
disseminated?  

Mark 
with 
X 

Comment 

Increase knowledge in the 
field 

x All partners have profited and advanced their knowledge in the 
field of federated learning and modularity and architecture for IoT 
devices for the vehicle industry. 

Be passed on to other 
advanced technological 
development projects 

x The results from FAMOUS such as PySaRe and the survival 
models are used in the RAPIDS (Scania CV AB, 2021) project , 
the edge analytics prototype will be used in DELPHI (Scania CV 
AB, 2021) and developed anomaly detection models in IICOM 



 

 

(Scania CV AB, 2021),FAIM (RISE, 2023) and in an internal 
project for self-awareness for autonomous driving. 

Be passed on to product 
development projects 

x Lessons on how to run models on edge devices, the architecture 
needed as well as the device requirements have been passed to 
pre-development projects. 

Introduced on the market   
Used in investigations / 
regulatory / licensing / 
political decisions 

  

Publications 

 Kuo-Yun Liang, et. al. Modular Federated Learning International Joint Conference on 
Neural Networks (IJCNN), 2022, pp. 1-8 

 Olov Holmer, et al. “Energy-Based Survival Models for Predictive Maintenance”, 22nd 
IFAC World Congress: Yokohama, Japan, July 9-14, 2023. 

 Sophia Zhang Pettersson, et al, Aggregation of Generative models in Federated Learning, 
to be published. 

 Sophia Zhang Pettersson, et al. Hierarchical Federated Gaussian Mixture Model, to be 
published. 

 Olov Holmer, et al. “Neural Network-Based Piecewise Survival Models”, to be published. 
 Olov Holmer, et al. “Usage-Specific Survival Modeling Based on Operational Data and 

Neural Networks”, to be published. 
 Olov Holmer, et al. “PySaRe – a Python package for survival analysis and reliability 

engineering”, available on GitHub and to be published on the Python Package Index 
 

 

9. Conclusions and future research 

During this project we have developed an Edge Device Prototype that enables Federated 
Machine Learning for anomaly detection using time series data collected from the CAN 
buses. Using the Crosser Data Flows this prototype can flexibly collect different CAN 
signals and stream them in the desired frequency in Snowflake using Amazon Web 
Services. For machine learning model deployment, the FEDn client from the FEDn 
framework was adapted to the Crosser Data Flows, enabling different machine learning 
models for anomaly detection using CAN sensor data.  
Within the project we implemented different federated machine learning anomaly 
detection; the Hierarchical Gaussian Mixture Model and Temporal Convolutional 
Networks. These two models perform well for the datasets tested; depending on the specific 
needs one can be more advantageous than the other. Notorious differences are the size of 
training data needed, where the Gaussian Mixture Models are much less data hungry for 
training than the temporal convolutional networks. Similarly, for the number of parameters. 
The implementation complexity, on the contrary, is higher for the Federated Gaussian 



Mixture Models than for the Temporal Convolutional Networks. In general, neural 
networks can be federated in an easier and more straight forward way than general 
statistical learning methods.
Here we also implemented and analysed different asynchronous federated learning recipes 
for a Neural Network, where clients that send late model updates are penalized. Important 
to control is the fraction of the models arriving in synchronous time (called buffer size k) 
and the total number of local models (called clients c), that is the k/c ratio is a key to control 
the convergency of the global federated model. We find that a ration of k/c>0.2 gives good 
convergence, independently of the number of local epochs. Of course, convergence might 
be slower but still, if sufficiently long trained, the global model will converge.
Using aggregated data, it was investigated if by exploiting the modular system of Scania 
CV AB multiple specialized survival models for components could be developed to 
improve accuracy against generic models. The results indicate that only in the case that the 
specialized models have large amount of data this approach can be beneficial. This is in 
general not the case, therefore, generic survival models without clustering based on the 
modular system is the preferred way. Therefore, the research focus shifted towards neural 
network-based survival models for continuous distributions. This type of neural network 
directly specifies the failure density leading to a high expressible model which has been 
shown to outperform existing methods, but at the cost of slightly higher computational 
demand. A python package that implements these models has been developed and made 
publicly available. 
One use-case made use of the edge analytics prototype for testing training and deployment. 
The built infrastructure was scalable and robust, suitable for edge ML models for anomaly 
detection in a federated and modular way. Further use-cases were done during the project
to explore the advantages of having access to high frequency data for fault prediction.
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