
 
 

 

 

Managing Automotive Software Architectures 
 

 
 

 

 

Project within the Vehicle Development programme 

 

Ulrik Eklund, Volvo Car Group 

2013-04-30 



 

Content 
1. Executive summary ................................................................................................... 3 

2. Background ............................................................................................................... 4 

3. Objective .................................................................................................................... 5 

4. Project realization ..................................................................................................... 5 

5. Results and deliverables ........................................................................................... 6 

5.1 Delivery to FFI goals ............................................................................................................ 6 

6. Dissemination and publications ............................................................................. 10 

6.1 Knowledge and results dissemination ................................................................................. 10 

6.2 Publications ......................................................................................................................... 10 

7. Conclusions and future research ........................................................................... 11 

8. Participating parties and contact person .............................................................. 12 

 

 FFI in short 

FFI is a partnership between the Swedish government and automotive industry for joint funding of research, 

innovation and development concentrating on Climate & Environment and Safety. FFI has R&D activities 

worth approx. €100 million per year, of which half is governmental funding. The background to the 

investment is that development within road transportation and Swedish automotive industry has big impact 

for growth. FFI will contribute to the following main goals: Reducing the environmental impact of transport, 

reducing the number killed and injured in traffic and Strengthening international competitiveness. Currently 

there are five collaboration programs: Vehicle Development, Transport Efficiency, Vehicle and Traffic 

Safety, Energy & Environment and Sustainable Production Technology. 

For more information: www.vinnova.se/ffi 

 

http://www.vinnova.se/ffi


 

1. Executive summary 

The project investigated efficient and sustainable development of software for mass-

produced embedded systems (MPES), and the implications a chosen way-of-working and 

software architecture have on research & development, and indirectly on the business. 

The project defined three goals for an original equipment manufacturer aspiring to be 

world leading in software development, and thus contributed to the Vehicle Development 

programme targets in the areas of Embedded systems & software and Development 

methods: 

1. Minimise leadtime from idea to implementation of new software features. This 

was supported by maximising the speed of the individual teams through their 

ways-of-working, and by decoupling the teams from each other through the 

composability of the architecture. 

2. The ability to frequently deploy new software features to end customers. This was 

achieved both on a team level for the same reasons, supporting the leadtime 

reduction from idea to implementation, and also through the concept of 

innovation experiment systems. 

3. Decoupling of software development from hardware and mechanical 

development, both in time and by the design dependencies. This was achieved 

both by moving from a centralised synchronised processes to more autonomous 

teams, and by providing suitable abstractions in the embedded platform 

underlying the application/feature software. 

The deliverables contributing to these goals enabling new business models for OEMs 

delivering mass-produced embedded systems were in terms of new ways-of-working, 

new architectures, and possibly supporting new ecosystems. 

 

The project identified five archetypical approaches of embedded software development. 

The common approach to develop embedded software is with a stage-gate or V process 

based on calendar time. The used architecture optimises qualities observable at run-time 

for the user/customer. The business goal is to minimise risks associated with technology 

investments. As an evolution from this, the project investigated how individual teams can 

use agile development as a way-of-working in the context of large MPES projects. 

 

The project identified key properties of architectures for mass-produced embedded 

systems to create new business options, for example offering the embedded software as a 

service instead of a product, or developing embedded software in an open software 

ecosystem. A reference architecture was designed to enable this, consisting of 20 

architectural decisions together with four architecture patterns. 

 

The project defined three architecture patterns to support innovation experiment systems 

for mass-produced devices with embedded software, which together with an 

infrastructure capable of collecting and analysing the data. This would enable 

development, deployment and measurement of the usage of new software in iterations 



 

which lengths are determined by the speed of the software development teams instead of 

the setup of the manufacturing process, going from years to weeks. 

 

The results have been published in 11 peer-reviewed scientific papers and resulted in a 

PhD in Computer Science and Engineering for one of the project participants. 

 

2. Background 

Software is prevalent in many products manufactured today; cars, washing machines, 

mobile phones, airplanes and satellites. The embedded software controls the behaviour of 

the product and is often critical for the success of the product. 

Typically these products are developed in large, and sometimes very complex, 

industrial projects where the manufacturing and delivery of the product in general is a 

heavier investment than the software budget. In the automotive domain the purchasing 

and manufacturing cost of the physical parts for each product is typically an order of 

magnitude higher than the R&D cost divided over the number of products built. This in 

turn tends to drive the entire R&D process, and software follows the process logic of the 

mechanical development and manufacturing setup. 

Software differs compared to its mechanical and electronic counterparts; once the 

software is developed there is no additional cost if one increases the number of products 

manufactured. Likewise, the cost of updating or replacing software in an already 

manufactured product is orders of magnitude cheaper compared to replacing hardware. 

The common business model of mass-produced systems is to sell the system as a 

product; the original equipment manufacturer (OEM) gets paid an agreed amount for 

each system delivered. From a customer perspective there are some issues with this 

business model when it comes to features purely relying on software. An example 

scenario in the automotive domain could be: 

 

My neighbour bought a new Volvo four months after I did. He got Spotify, but I 

didn’t. Do I feel “cheated”? 

 

Another example scenario would be 

 

Airplay
1
 turns out to be the next hot thing. It takes Volvo 30 months to include this 

feature according to the present stage gate process. Is the feature still “fresh” 

when delivered? 

 

A possible future scenario could be that Airplay is deployed to customers independently 

of when the car is built in the factory, i.e. after the customer has received the vehicle. 

With more and more vehicles becoming connected it is conceivable to have continuous 

updates with new software features to customers on a scale and to a cost that is 

impossible would the updates require hardware modifications. This builds trust in the 

                                                 
1
 http://www.apple.com/airplay/  

http://www.apple.com/airplay/


 

brand to maintain a useful product and prolong the value for the customer after the 

purchase. 

The team developing Airplay connectivity could deploy it after three months of 

development, making it “almost competitive” with smartphones. More and more services 

are used regardless if one is using the phone or driving in a car, and from a customer 

perspective it is difficult to understand why services in one context cannot be used in 

another. This perspective is a business driver for decoupling software development from 

mechanical development in embedded consumer products. 

 

3. Objective 

The topic of investigation in the project was efficient and sustainable development of 

software for mass-produced embedded systems (MPES), and the implications a chosen 

way-of-working and software architecture have on Research & Development, and 

indirectly on the business. 

 

4. Project realization 

The core of the project was about engineering new solutions to new or future problems; 

developing artefacts, processes and methods to create opportunities for business for 

embedded software in mass-produced systems in general, and automotive software in 

particular. At the same time it was a research project done in cooperation between 

industry and academia, with the research goals directed by industrial needs; both problem 

investigations and evaluations of prescriptive measures were based on scientifically 

collected empirical data from industrial contexts. In such a setting there are several 

established research methods that can be used; experiments, design science, design 

research, action research or participative case studies. 

Therefore a research process using multiple methodologies was chosen: Design 

research was chosen as the overall method, scoping the complete project and putting the 

partial results into relation of each other. Case studies were chosen as the method in the 

individual investigations supporting the desired proximity between academic research 

and industrial needs 

The studied cases provide either insight in critical issues in industrial development of 

software for MPES or evaluate developed artefacts in a real world context. Most of the 

reasoning and analysis in the cases are qualitative, based on industrial observations and 

experiences rather than experimentation and elaborate theories. 

 



 

5. Results and deliverables 

5.1 Delivery to FFI-goals 

The project has contributed to the targets of the Vehicle Development programme targets 

with vehicle-related research, innovation and development activities in the areas of 

Embedded systems & software and Development methods. 

5.1.1. Development methods 

The project identified five archetypical approaches of embedded software development, 

based on a mapping study over published scientific literature. 

 

Autonomous development teams

Minimise
customer

risk

Quality-driven,
integration-centric

Minimise technology risk

Sequential,
Planned,

stage-gates

Project
hierarchy,

central
control 

Feature-oriented,
composition of parts

Iterative,
evolution of

product content

Business:

Architecture:

Process:

Organisation:

Range of R&D approaches

A B C D E

 
 

The first observation is that the rightmost (E) approach is the most common way to 

develop embedded software and can be considered the common practice, especially in the 

automotive industry. The second most common approach is using e.g. agile development 

on the team level (D). The second observation is that the evolution of an organisation 

goes from E to A, with the most common just being going from E to D. In no found case 

there an evolution in the opposite direction, and the conclusion is that evolution through 

the model is unidirectional. 

These two observations together suggests an order in which organisation may adapt 

new practices and is therefore suggested as a prescription of process and architecture 

changes. 

 

The project explored agile development in in the automotive industry, i.e. approach D 

from the model above. Agile is not new, but is nevertheless not the norm for automotive 

software development.  

The project investigated how individual teams can use agile development as a way-of-

working in the context of large MPES projects. The project identified a set of 19 



 

measures, based on a model (see below) over the critical interactions a team doing agile 

software development has to the rest of a large project organisation. 

 

Agile
software

development

Traditional
software

development

R
e
q
s

Product project gates

Embedded software development

Subcontracting

D
e
liv

e
ry

Mechanics, hardware and systems development

G
a
te

s
V

a
lid

.

Subcontracting

 
 

Each measure is either a prerequisite for agile development, e.g. must be defined in the 

pre-game phase of Scrum, or an activity while doing the iterations, e.g. in the game phase 

of Scrum. 

 The requirements measures encompasses how the software requirements 

implemented by the agile team relate to the requirements of the finished product, 

they typically contain both functional requirements experienced by the end-user, 

but also quality attributes, such as testability. The model includes methods and 

tools for capturing and transferring requirements in this category. 

 The project gate measures focuses on the interface between the software 

development team and the full product project. This includes the static 

organisation of the project including governance and reporting, as well as basic 

principles for driving and measuring progress. 

 Validation measures are concerned with the interface between agile software 

development and the validation of the product as a whole. This category includes 

activities necessary to integrate the various software and hardware parts to a 

whole, how this whole is verified against the requirements and the validation of 

the full product. 

 The delivery category describes the principles for how the finished software is 

delivered to the end-user. In mass-produced embedded systems the software and 

the hardware is delivered as a single product and this is the only possibility if the 

software is stored in ROM 

 The measures of internal practices have no direct relationship to other software 

development teams or the rest of the organisation, and are thus up to the agile 

teams. However, they are important for successful implementation of agile 

development in the context of mass-produced embedded systems. 

 



 

Since more and more embedded products also are connected, it is conceivable to develop, 

deploy and measure usage on new software in iterations which lengths are determined by 

the speed of the software development teams instead of the setup of the manufacturing 

process, going from years to weeks. Such an innovation experiment system (IES) would 

utilise feedback from real users of the embedded products in a scale comparable to the 

entire customer base. The notion of continuous innovation is not new, but the concept is 

novel in the embedded domain. 

The driver for having such an IES is that business and design decisions should be 

based on data, not opinions among developers, domain experts or managers. The 

company running the most experiments among the customer base against the lowest cost 

per experiment outcompetes the others by having the decision basis to engineer products 

with outstanding customer experience. 

5.1.2. Embedded systems & software 

The project identified key properties of architectures for mass-produced embedded 

systems to create business options, for example offering the embedded software as a 

service instead of a product, or developing embedded software in an open software 

ecosystem. The following list of quality attributes are necessary for a platform allowing 

for composition of independently developed software, the platform being a precursor for 

an open software ecosystem: 

 Composability: The software platform must fulfil a set of properties to allow the 

decoupling of applications and eliminate the need for development 

synchronisation. The architecture should allow development, integration and 

validation of applications independent of other applications. 

 Deployability: The applications must be possible to deploy independently of each 

other, and the product behaviour must not depend on the order in which 

applications are installed. There must also be a deployment infrastructure in place 

which fulfils necessary integrity requirements. 

 Maintainability: The platform must be sufficiently stable over time. Since the 

evolution of the platform and applications is decoupled, i.e. no synchronised 

versioning, backwards compatibility is a key attribute. 

 Configurability: The platform must support variability in the hardware 

configuration of sensors and actuators since individual products can vary within 

the product family. 

In addition to these qualities, there are two more quality attributes that affect the business 

value for embedded products in various domains, but are not universal: 

 Consistent User Interface: This is often considered important by manufacturers 

of embedded consumer products since much of brand recognition and willingness 

to stay with the brand lies here. The other major aspect for brand distinction is the 

qualities provided by the hardware (precision, reliability, etc.). 

 Dependability: Many embedded domains have stringent dependability 

requirements. These domains are probably not the first adopters of an ecosystem-

based approach to software development. A safety-critical embedded platform 

would need satisfy; real-time requirements for the execution of individual 



 

applications, integrity requirements, high availability, and mechanisms to 

eliminate undesired feature interaction if several applications interact with the 

same actuators. 

 

A reference architecture was designed to enable the qualities above, consisting of 20 

architectural decisions (see figure below) together with four architecture patterns for: 

 Device abstraction 

 Data and service provision 

 Device and information composition 

 Safety-critical, certified and open application access 

The conclusion is that it is conceivable to develop a platform suitable for compositional 

development, as a precursor for an open software ecosystem. 

 

D1.2: Higher level platform
functions developed with same
WoW as external applications

D2.3: Differentiate application
access to actuators
through certification

D2.2: H/W abstraction
of sensors & actuators

part of platform

D3.2: Each application
executes in an

isolated environment

D3.4: Critical applications
exectue on

dedicated H/W

D3.8: Common data
model for exchange

between applications

D3.5: Platform supports 
necessary integrity levels

for data exchange

D3.6: Platform hides imple-
mentation of data integrity

from applications

D3.9: Dictionary of
available data

D3.10: Layered platfrom
from verification

perspective

D2.1: Dependencies
between applications are

only established at run-time

D1.1: Independent
deployment

of applications

D3.3: Hot-swapping
of applications

D3.1: Common run-
time model supported

by platform

D3.7: Run-time feature
model to describe
H/W configuration

D2.4: The platform will
provide system-wide

usage modes

D2.5: Migration into
platform of higher
level applications

Fundamental
decisions

Ecosystem 
facilitation 
decisions

Platform 
implementation 
decisions

 
 

The project defined three architecture patterns to support IES for mass-produced devices 

with embedded software, which together with an infrastructure capable of collecting and 

analysing the data.  

 

The prototype developed in cooperation with FFI-project DFEA 2020 implement most of 

the design decisions for an open platform. This is a novel reference architecture for 

composition of independently developed embedded software applications, suitable for 

using in an open software ecosystem. Open software ecosystems are not new, but no 

reference for implementation in the embedded domain was found in published literature. 

The prototype also implemented one of the client architectures for IES and ran an 

experiment collecting data from seven users. The conclusion is that it is technically 

feasible to implement an IES with the defined architecture, and that the measured data 

can support conclusions about implemented designs. 

 

The two reference architectures defined in the project is regarded as state-of-the art for 

embedded systems, and will probably no be common practice within the automotive 

industry within the next ten years. Experiences made from prototype design will be of 

strategic importance from an international perspective. 



 

 

6. Dissemination and publications 

6.1 Knowledge and results dissemination 

Within Volvo Car Corporation the results and experiences from the project will influence 

the software in future car models, and changes in methodologies will propagate within 

the development organisation. Volvo Car Corporation has a number of projects, where 

the results of the project will be further developed and realized. 

 

The results and experiences from the project already have and will continue to influence 

the research performed within the Software Center
2
 at Lindholmen, Gothenburg. 

6.2 Publications 

The project has contributed to the following peer-reviewed scientific papers: 

1. U. Eklund and C. M. Olsson, “A Case Study of the Architecture Business Cycle 

for an In-Vehicle Software Architecture,” in Proceedings of the Joint Working 

IEEE/IFIP Conference on Software Architecture & European Conference on 

Software Architecture, Cambridge, UK, 2009, pp. 93–100. 

2. U. Eklund and T. Arts, “A Classification of Value for Software Architecture 

Decisions,” in Proceedings of the European Conference on Software Architecture, 

Copenhagen, Denmark, 2010, vol. 6285, pp. 368–375. 

3. H. Gustavsson and U. Eklund, “Architecting Automotive Product Lines: 

Industrial Practice,” in Proceedings of the Software Product Line Conference, 

Jeju, South Korea, 2010, vol. 6287, pp. 92–105. 

4. R. A. McGee, U. Eklund, and M. Lundin, “Stakeholder identification and quality 

attribute prioritization for a global Vehicle Control System,” in Proceedings of the 

Fourth European Conference on Software Architecture: Companion Volume, 

Copenhagen, Denmark, 2010, pp. 43–48. 

5. J. Bosch and U. Eklund, “Eternal Embedded Software: Towards Innovation 

Experiment Systems,” in Proceedings of the International Symposium On 

Leveraging Applications of Formal Methods, Verification and Validation, 

Heraclion, Crete, 2012, vol. 7609, pp. 19–31. 

6. U. Eklund and J. Bosch, “Applying Agile Development in Mass-Produced 

Embedded Systems,” in Agile Processes in Software Engineering and Extreme 

Programming, Malmö, Sweden, 2012, vol. 111, pp. 31–46. 

7. U. Eklund and J. Bosch, “Architecture for Large-Scale Innovation Experiment 

Systems,” in Proceedings of the Joint Working IEEE/IFIP Conference on 

Software Architecture & European Conference on Software Architecture, 

Helsinki, Finland, 2012, pp. 244–248. 

                                                 
2
 http://www.lindholmen.se/sv/nyheter/mjukvara-framtiden-svensk-industri  

http://www.lindholmen.se/sv/nyheter/mjukvara-framtiden-svensk-industri


 

8. U. Eklund and J. Bosch, “Introducing Software Ecosystems for Mass-Produced 

Embedded Systems,” in Proceedings of the International Conference on Software 

Business, Cambridge, MA, USA, 2012, pp. 248–254. 

9. U. Eklund and J. Bosch, “Using Architecture for Multiple Levels of Access to an 

Ecosystem Platform,” in Proceedings of the ACM Sigsoft conference on Quality 

of Software Architectures, Bertinoro, Italy, 2012, pp. 143–148. 

10. U. Eklund and H. Gustavsson, “Architecting Automotive Product Lines: 

Industrial Practice,” Science of Computer Programming, 2012. 

11. U. Eklund, N. Jonsson, A. Eriksson, and J. Bosch, “A reference architecture 

template for software-intensive embedded systems,” in Proceedings of the 

WICSA/ECSA Companion Volume, Helsinki, Finland, 2012, pp. 104–111. 

 

Based on the work in the above articles a PhD thesis was published at Chalmers 

University of Technology: “Engineering software for mass-produced embedded systems - 

Ways-of-working, architecture and ecosystems for innovation”, 

http://publications.lib.chalmers.se/publication/173642-engineering-software-for-mass-

produced-embedded-systems-ways-of-working-architecture-and-ecosystems  

 

The project has initiated the following bachelor theses: 

1. “Exploring variation mechanisms in the automotive industry - A case study” by 

Emil Janitzek and Marcus Ljungblad, 2010 (http://hdl.handle.net/2077/23469) 

2. “Value creation from an In-Vehicle Infotainment Perspective: A Case Study” by 

Robin Larsson and Maryam Zarrinjouei, 2011 (http://hdl.handle.net/2077/27850) 

3. “Introducing the three tier model for app security and reliability in critical systems 

- An exploratory practical approach” by Per Lundin and Erik Kinding, 2011 

(http://hdl.handle.net/2077/27849) 

 

The project also maintained a blog during the duration of the project: http://automotive-

sw-architecture.blogspot.se/  

 

7. Conclusions and future research 

The project contribution towards leadtime reduction is supported by maximising the 

speed of the individual teams through their way-of-working, and by decoupling the teams 

from each other through the composability of the architecture. 

The ability to frequently deliver new software features is achieved both on a team 

level for the same reasons, supporting the leadtime reduction from idea to 

implementation, and also through the concept of innovation experiment systems. 

The decoupling of software from hardware development is achieved both by moving 

from a centralised synchronised processes to more autonomous teams, and by providing 

suitable abstractions in the embedded platform underlying the application/feature 

software. 

http://publications.lib.chalmers.se/publication/173642-engineering-software-for-mass-produced-embedded-systems-ways-of-working-architecture-and-ecosystems
http://publications.lib.chalmers.se/publication/173642-engineering-software-for-mass-produced-embedded-systems-ways-of-working-architecture-and-ecosystems
http://hdl.handle.net/2077/23469
http://hdl.handle.net/2077/27850
http://hdl.handle.net/2077/27849
http://automotive-sw-architecture.blogspot.se/
http://automotive-sw-architecture.blogspot.se/


 

Future work 

A successful transition to more autonomous development on a team level seem to depend 

on dedication and enthusiasm among developers, strong domain knowledge in the 

team(s), stable interfaces to other systems, and a good systems engineering foundation (in 

the form of a systems design or architecture), besides suitable process and architectural 

measures. Further studies of sufficient prerequisites should be of interest to practitioners 

and researchers alike. 

Research on how to mitigate issues with synchronisation and integration of many 

teams in large projects, where scaling of agile practices is just a special case. Of special 

interest is if the responsibility of synchronising the teams can be moved from the process 

to the architecture, creating a completely composable system where successful integration 

is assured just by following the architecture. 

More studies with industrial validation of innovation experiment systems for 

embedded systems are needed. 

 

8. Participating parties and contact person  

 

Volvo Car Group 

Dr. Ulrik Eklund 

Dept. 94121, PVD2:1 

SE-405 31 Göteborg 

Sweden 

ulrik.eklund@volvocars.com  

 

 

Chalmers University of Technology 

Prof. Jan Bosch 

Dept. Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

jan.bosch@chalmers.com  

 

 

 

mailto:ulrik.eklund@volvocars.com
mailto:jan.bosch@chalmers.com

