Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

Smart condition assessment, surveillance and management of critical bridges

Reference number
Coordinator KUNGLIGA TEKNISKA HÖGSKOLAN - KTH Avdelningen för bro- och stålbyggnad
Funding from Vinnova SEK 1 497 000
Project duration October 2016 - December 2018
Status Completed
Venture The strategic innovation program InfraSweden
Call 2016-01733-en

Important results from the project

The overall aim of the project was to develop an integrated system for monitoring, communication, condition assessment and decision support for critical bridges. Equipment for wireless measurements of the real response of bridges has been developed and tested on the Old Lidingö Bridge in Stockholm. Methods have been developed to make use of the measured response for condition assessment and planning of maintenance actions. By cloud based services for information distribution, the results from the measurements can be visualized in an App.

Expected long term effects

The results of the project show that reliable wireless sensor networks are available for long-term measurements on bridges. We have also seen that it is possible to harvest energy from vibrations of train passages, even if the contribution is small, and how the scheduling of activities can extend the service life of batteries. By the theoretical models developed, measured data can be used to extend the service life of existing bridges with known damages. The results of the project are expected to contribute to a more extensive use of monitoring to keep critical bridges in service.

Approach and implementation

An evaluation of experimental and commercial equipment for wireless measurements has been conducted with the Old Lidingö Bridge as case study. Data from the measurements have been used to develop and test routines for communication and energy harvesting, and as input for case studies within the theoretical parts of the project. Models for condition assessment and damage detection has involved theoretical modelling of degeneration processes and service life prediction, furthermore, machine learning by artificial neural networks (ANN).

External links

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 3 December 2018

Reference number 2016-03272