Improved Impact of Collision Avoidance by Steering Technology on Real Life Safety
Reference number | |
Coordinator | Zenuity AB |
Funding from Vinnova | SEK 5 200 000 |
Project duration | January 2015 - December 2019 |
Status | Completed |
Venture | Traffic safety and automated vehicles -FFI |
Call | 2014-03964-en |
End-of-project report | 2014-05621.pdf(pdf, 487 kB) (In Swedish) |
Important results from the project
The overall objectives with this project is to identify methods for significantly higher safety benefits of active safety systems. Even if most of the important accident types are adressed by todays system, they still suffer from significant limitations. In specific, methods for improving the accuracy of prediction of vehicles future paths, are sought, as well as an evaluation of these methods effects on the overall safety impact of the relevant systems.
Expected long term effects
From a thorough review study of existing strategies carried out within the project, it was concluded that to significantly improve the benefit from collision avoidance systems relying on automatic steering, the predictions of the vehicles future paths need to be considerably improved. Two different methods have been studied and applied. Promising results when applying artificial neural networks to predict possible lane departures, have been achieved. Compared to today’s state-of the art methods, the performance was significantly improved.
Approach and implementation
Initially, an analysis of limitations and underlaying causations of today’s system, as well as a thorough review of all existing methods and their pros and cons, were carried out. Based on this analysis, it was primarily studied how to best use a neural network, where access to large data sets containing real world driving was an important precondition. The methods have been implemented and evaluated in simulation but with real data as input, making the results highly relevant.